
MODULE 5 WEB SERVER SECURITY

Introduction
Internet facing web servers are exposed to high security risks. We quite commonly see web servers
being hacked (eg: malicious code being injected in website content), and then clients that are
browsing the website are most likely to be transparently compromised (aka drive-by download).
And there is also the denial of service risk, the information leakage risk, etc.

Security to the web server needs to be divided in various sections, these sections are having
different challenges which includes the zero day attacks, patching issues, infrastructure related
problems.

Securing the Operating System
Web servers operate on a general-purpose operating system. Many security issues can be avoided
if the operating systems underlying Web servers are configured appropriately. Default hardware
and software configurations are typically set by vendors to emphasize features, functions, and ease
of use at the expense of security.

Securely installing and configuring an Operating system

1. Patch and Upgrade Operating System
All operating systems released today have some known vulnerabilities that should be
corrected before using the operating system to host a Web server. The patching should be
done through a process as follows:

- Create and implement a patching process
- Identify latest patches for the vulnerabilities in the wild
- Mitigate vulnerabilities through some work around solution until patches are

available
- Install permanent fixes.

2. Remove or Disable Unnecessary Services and Applications
A Web server should be on a dedicated, single-purpose host. Many operating systems are
configured by default to provide a wider range of services and applications than required
by a Web server; therefore, a Web administrator should configure the operating system to
remove or disable unneeded services. Some common examples of services that should
usually be disabled would include:

- Windows Network Basic Input/Output System (NetBIOS), if not required
- NFS, if not required „ File Transfer Protocol (FTP)
- Berkeley “r” services (e.g., rlogin, rsh, rcp)
- Telnet



- Network Information System (NIS)
- Simple Mail Transfer Protocol (SMTP)
- Compilers
- Software development tools

Removing unnecessary services and applications is preferable to simply disabling them
through configuration settings, because attacks that attempt to alter settings and activate a
disabled service cannot succeed when the functional components are completely removed.

When configuring the operating system, apply the principle “disable everything except that
which is expressly permitted” – that is, disable or, preferably, remove all services and
applications and then selectively enable those required by the Web server. If possible, install
the minimal operating system configuration that is required for the Web server application.
If the operating system installation system provides a “minimal installation” option, choose
that because it will minimize the effort required to remove unnecessary services. Many
uninstall scripts or programs do not completely remove all components of service; therefore,
it is always better to avoid installing unnecessary services when possible.

The services enabled on a Web server will depend on the functions the organization wants
the server to provide. Those services might include database protocols to access a database,
file transfer protocols, and remote administration services. Each of these services, even
though they may be required, comes with an increased risk to the server. Whether the risks
outweigh the benefits is a decision each organization must make for itself.

3. Configuring Operating System User Authentication
For Web servers, authorized users who can configure the system and initiate Web services
are typically a small number of designated Web administrators and Webmasters. However,
the users who can access the public Web server may range from unrestricted to restricted
subsets of the Internet community. To enforce policy restrictions, if required, the Web
administrator must configure the system to authenticate prospective users by requiring
proof that each person is authorized for such access. Even though a Web server may allow
unauthenticated access to most Web services, administrative and other types of specialized
access should be limited to specific individuals and groups.
To ensure the appropriate user authentication is in place, take the following steps:

a) Remove or disable unneeded default accounts and groups
The default configuration of the operating system often includes guest accounts
(with and without passwords), administrator or root level accounts, and accounts
associated with local and network services. The names and passwords for those
accounts are well known. Remove or disable unnecessary accounts to eliminate
their use by intruders, including guest accounts on computers containing sensitive
information. If there is no requirement to retain a guest account or group, severely



restrict its access and change the password in accordance with the organizational
password policy.

b) Disable non-interactive accounts
Disable accounts (and the associated passwords) that need to exist but do not
require an interactive login. For Unix systems, disable the login shell, or provide a
login shell with NULL functionality (/bin/false).

c) Create the user groups.
Assign users to the appropriate groups. Then assign rights to the groups. This
approach is preferable to assigning rights to individual users.

d) Create the user accounts
Identify who will be authorized to use each computer and its services. Create only
the necessary accounts. Discourage or prohibit the use of shared accounts.

e) Check the organization’s password policy
Set account passwords appropriately which should be based on Length, complexity,
Aging, Reuse, Authority.

f) Configure computers to deny login after a small number of failed attempts
It is relatively easy for an unauthorized user to try to gain access to a computer by
using automated software tools that attempt all passwords. If the operating system
provides the capability, configure it to deny login after three failed attempts.
Typically, the account is “locked out” for a period of time (such as 30 minutes) or
until a user with appropriate authority reactivates it.

g) Install and configure other security mechanisms to strengthen authentication
If the information on the Web server requires it, consider using other authentication
mechanisms such as tokens, client/server certificates, or one-time password
systems. Although they can be more expensive and difficult to implement, they
may be justified in some circumstances. When such authentication mechanisms and
devices are used, the organization’s policy should be reviewed to reflect in the way
in which they are applied.

h) Security testing the OS
It’s necessary to validate all the controls through periodic assessment like
penetration testing and vulnerability assessment.

Securely installing and configuring the web server
1. Securely Installing the Web Server

The minimal amount of Web server services required and eliminate any known
vulnerabilities through patches or upgrades. If the installation program installs any
unnecessary applications, services, or scripts, they should be removed immediately
once the installation process completes. During the installation of the Web server, the
following steps should be performed:

a) Install the server software on a dedicated host



b) Install the minimal Internet services required
c) Apply any patches or upgrades to correct for known vulnerabilities
d) Create a dedicated physical disk or logical partition (separate from operating

system and server application) for Web content
e) Remove or disable all services installed by the Web server application but not

required (e.g., gopher, FTP, and remote administration)
f) From the Web server application root directory, remove all files that are not

part of the Web site
g) Remove all sample documents, scripts, and executable code
h) Remove all vendor documentation from server
i) Apply appropriate security template or hardening script to server Reconfigure

HTTP service banner (and others as required) NOT to report Web server and
operating system type and version. (This can be accomplished in IIS using the
Microsoft’s free IIS Lockdown Tool and in Apache via the “ServerTokens”
directive.)

2. Configuring Access Controls
Most Web server host operating systems provide a capability to specify access
privileges individually for files, devices, and other computational resources on that
host. Any information that the Web server can access using these controls can
potentially be distributed to all users accessing the public Web site. The Web server
software is likely to provide additional file, device, and resource access controls
specific to its operation.
Web administrators should consider from two perspectives how best to configure these
access controls to protect information stored on their public Web server:
a) Limit the access of the Web server software to a subset of computational resources
b) Limit the access of users through additional access controls enforced by the Web

server, where more detailed levels of access control are required

Typical files to which access should be controlled are as follows:

 Application software and configuration files

 Files related directly to security mechanisms:
- Password hash files and other files used in authentication
- Files containing authorization information used in controlling access
- Cryptographic key material used in confidentiality, integrity, and non-repudiation

services.
 Server log and system audit files
 System software and configuration files.

3. Using File Integrity Checkers



A file integrity checker is an application that computes and stores a checksum for every
guarded file and establishes a database of file checksums. It allows a system administrator
to easily recognize changes to critical files, particularly unauthorized changes. Checksums
should be recomputed regularly to test the current value against the stored value to identify
any file modifications.

Although an integrity checker is a useful tool that does not require a high degree of human
interaction, it needs to be used carefully to ensure that it is effective. To create the first
reference database a file integrity checker requires a system that is known to be in a secure
state.

Integrity checkers should be run nightly on a selection of system files that would be
affected by a compromise. Integrity checkers should also be used when a compromise is
suspected for determining the extent of possible damage. If an integrity checker detects
unauthorized system file modifications, the possibility of a security incident should be
considered and investigated according to the organization’s incident response and reporting
policy and procedures.

Securing Web Content
The two main components to Web security are the security of the underlying server application
and operating systems, and the security of the actual content.

1. Publishing Information on Public Web Sites
Many organizations do not have a Web publishing process or policy that determines
what type of information to publish openly, what information to publish with restricted
access, and what information should be omitted from any publicly accessible
repository.
To ensure a consistent approach, an organization should create a formal policy and
process for determining and approving the information to be published on a Web
server. In many organizations, this is the responsibility of the CIO and/or public affairs
officer. Such a process should include the following steps:

- Identify information that should be published on the Web
- Identify the target audience (Why publish if no audience exists?)
- Identify possible negative ramifications of publishing the information
- Identify who should be responsible for creating, publishing, and maintaining this

particular information
- Create or format information for Web publishing
- Review the information for sensitivity and distribution/release controls (including

the sensitivity of the information in aggregate)
- Determine the appropriate access and security controls
- Publish information
- Verify published information



- Periodically review published information to confirm continued compliance with
organizational guidelines.

2. Securing Active Content and Content Generation Technologies
Active content refers to interactive program elements downloaded to the client (i.e., a
Web browser) and processed there instead of the server. A variety of active content
technologies exists; some of the more popular examples are ActiveX, Java, VBScript,
JavaScript, and Asynchronous JavaScript and XML (AJAX). The use of active content
often requires users to reduce the security settings on their Web browsers for processing
to occur. If not implemented correctly, active content can present a serious threat to the
end user.
For example, active content can take actions independently without the knowledge or
expressed consent of the user. While active content poses risk to the client, it can also
pose risk to the Web server. The reason is that information processed on the client is
under the control of the user, who can potentially manipulate the results by reverse
engineering and tampering with the active content. For example, form validation
processing done with active content elements on the client side can be changed to return
out-of-range options or other unexpected results to the server. Therefore, the results of
processing done on the client by elements of active content should not be trusted by the
server; instead, the results should be verified by the server. Organizations considering
the deployment of client-side active content should carefully consider the risks to both
their users and their Web servers.

3. Server-Side Content Generator Security Considerations
When examining or writing an active content executable or script, consider the following:

- The executable code should be as simple as possible. The longer or more complex
it is, the more likely it will have problems.

- The executable code’s ability to read and write programs should be limited. Code
that reads files may inadvertently violate access restrictions or pass sensitive system
information. Code that writes files may modify or damage documents or introduce
Trojan horses.

- The code’s interaction with other programs or applications should be analyzed to
identify security vulnerabilities. For example, many CGI scripts send e-mails in
response to form input by opening up a connection with the sendmail program.
Ensure this interaction is performed in a secure manner.

- On Linux/Unix hosts, the code should not run with suid (set-user-id).
- The code should use explicit path names when invoking external programs. Relying

on the PATH environment variable to resolve partial path names is not
recommended.

- Web servers should be scanned periodically for vulnerabilities, even if they do not
employ active content. Network security scanners may detect vulnerabilities in the
Web server, OS, or other services running on the Web server. Web application
vulnerability scanners specifically scan for content generator vulnerabilities.



- Web content generation code should be scanned and/or audited (depending on the
sensitivity of the Web server and its content). Commercially available tools can
scan .NET or Java code. A number of commercial entities offer code review
services. Web content generation code should be developed following current
recommended practices.

- For data entry forms, determine a list of expected characters and filter out
unexpected characters from input data entered by a user before processing a form.
For example, on most forms, expected data falls in these categories: letters a-z, A-
Z, and 0-9. Care should be taken when accepting special characters such as &, ′, ″,
@, and !. These symbols may have special meanings within the content generation
language or other components of the Web application.

- Character set encoding should be explicitly set in each page. Then the user data
should be scanned for byte sequences that represent special characters for the given
encoding scheme.

- Each character in a specified character set can be encoded using its numeric value.
Encoding the output can be used as an alternate for filtering the data. Encoding
becomes especially important when special characters, such as copyright symbols,
can be part of the dynamic data. However, encoding data can be resource intensive,
and a balance must be struck between encoding and other methods for filtering the
data.

- Cookies should be examined for any special characters. Any special characters
should be filtered out.

- An encryption mechanism should be used to encrypt passwords entered through
script forms

- For Web applications that are restricted by username and password, none of the Web
pages in the application should be accessible without executing the appropriate login
process.

- Many Web servers and some other Web server software install sample scripts or
executables during the installation process. Many of these have known
vulnerabilities and should be removed immediately. See appropriate manufacturer’s
documentation or Web sites for more information.

4. Cross-Site Scripting Vulnerabilities
Cross-site scripting (XSS) is a vulnerability typically found in interactive Web
applications that allows code injection by malicious Web users into the Web pages
viewed by other users. It generally occurs in Web pages that do not do the appropriate
bounds checking on data input by users. An exploited cross-site scripting vulnerability
can be used by attackers to compromise other users’ computers or to receive data from
another user’s Web session (e.g., user ID and password or session cookie). Thus,



although this is a client side exploit, it also impacts the server indirectly since a
compromised user, particularly one with elevated privileges, represents a threat to the
server. XSS vulnerabilities are used frequently to conduct phishing attacks or exploit
Web browser vulnerabilities to gain control of end user PCs
The solution to XSS attacks is to validate all user input and remove any unexpected or
potentially risky data. Another solution is to use an HTML-quoted of any user input
that is presented back to other users. This will prevent the Web browsers of other users
from interpreting that input and acting on any embedded commands present.

Authentication and Encryption Technologies
Public Web servers often support a range of technologies for identifying and authenticating users
with differing privileges for accessing information. Some of these technologies are based on
cryptographic functions that can provide an encrypted channel between a Web browser client and
a Web server that supports encryption. Without user authentication, organizations will not be able
to restrict access to specific information to authorized users. All information that resides on a
public Web server will then be accessible by anyone with access to the server. In addition, without
some process to authenticate the server, users will not be able to determine if the server is the
“authentic” Web server or a counterfeit version operated by a malicious entity.

1. Address-Based Authentication
The simplest authentication mechanism that is supported by most Web servers is address-
based authentication. Access control is based on the IP address and/or hostname of the host
requesting information.

2. Basic Authentication
The basic authentication technology uses the Web server content’s directory structure.
Typically, all files in the same directory are configured with the same access privileges. A
requesting user provides a recognized user identification and password for access to files in
a given directory. More restrictive access control can be enforced at the level of a single file
within a directory if the Web server software provides this capability. Each vendor’s Web
server software has its own method and syntax for defining and using this basic
authentication mechanism.
From a security perspective, the main drawback of this technology is that all password
information is transferred in an encoded, rather than an encrypted, form. Anyone who knows
the standardized encoding scheme can decode the password after capturing it with a network
sniffer. Furthermore, any Web content is transmitted as unencrypted plaintext, so this
content also can be captured, violating confidentiality.

3. Digest Authentication
Because of the drawbacks with basic authentication, an improved technique known as digest
authentication was introduced in version 1.1 of the HTTP protocol. Digest authentication
uses a challenge-response mechanism for user authentication. Under this approach, a nonce
or arbitrary value is sent to the user, who is prompted for an ID and password, as with basic



authentication. However, in this case, the information entered by the user is concatenated
and a cryptographic hash of the result is formed. This hash is concatenated with the nonce
and a hash of the requested method and URL, and the result is then rehashed as a response
value that is sent to the server.
Because the user’s password is not sent in the clear, it cannot be directly sniffed from the
network. The user’s password is not needed by the server to authenticate the user—only the
hashed value of the user ID and password. Because the nonce can serve as an indicator of
timeliness (e.g., it can be composed of date and time information), replay attacks are also
thwarted. Digest authentication is also susceptible to offline dictionary attacks, where the
attacker tries various passwords in an attempt to recreate the captured digest value. These
limitations can be overcome using digest authentication in conjunction with SSL/TLS.

4. SSL/TLS
The SSL and TLS protocols provide server and client authentication and encryption of
communications. TCP/IP governs the transport and routing of data over the Internet. Other
protocols, such as HTTP, LDAP, and Internet Message Access Protocol (IMAP), run “on
top of” TCP/IP in that they all use TCP/IP to support typical application tasks, such as
displaying Web pages or delivering e-mail messages. Thus, SSL/TLS can support more than
just secure Web communications. Figure 7-1 shows how SSL/TLS fits between the
application and network/transport layers of the Internet protocol suite.

Fig: SSL/TLS Location within the Internet

HTTP ETCSMTP

SSL/TLS

TCP/IP


