BACHELOR OF TECHNOLOGY (C.B.C.S.) (2014 COURSE) B.Tech.Sem - VI MECHANICAL: WINTER- 2022 SUBJECT: INTERNAL COMBUSTION ENGINES

Day: Friday

Time: 10:00 AM-01:00 PM

Date: 25-11-2022

W-13451-2022

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Draw neat and labeled diagrams WHEREVER necessary.
- 4) Assume suitable data if necessary.
- Q.1 With neat sketch explain working of 4-stroke petrol engine. In an air standard diesel cycle the pressure and temperature at the beginning of compression are 1 bar and 77°C respectively and the compression ratio is 14:1. The pressure at the end of expansion is 2.7 bar. Determine:
 - i) Maximum pressure attained during the cycle.
 - ii) Percentage volume of fuel cut-off of the swept volume

Cp = 1.05 kJ/kgK;

v = 1.4;

Cv = 0.75 kJ/kgK.

OR

Discuss the valve timing diagram of 4-stroke petrol engine. Give the comparison of Otto and diesel cycle on the basis of:

- i) Same constant maximum pressure and heat supplied.
- ii) Same maximum pressure and temperature.
- Q.2 Draw the neat and labeled sketches of following:

[10]

- i) pintle nozzle
- iii) spark plug
- v) multi-hole nozzle

- ii) pintaux nozzle
- iv) single hole nozzle

OR

Explain with neat sketch Bosch fuel pump.

Q.3 Explain the need of cooling system in I-C Engines. Classify the cooling- [10] systems and explain anyone with neat sketch.

OR

Explain the need of ignition system in IC Engines. Explain electronic ignition system with sketch.

Explain eddy current dynamometer with sketch. A four stroke diesel engine [10] has a cylinder bore of 150 mm and a stroke of 250 mm. The crank shaft speed is 300 rpm and fuel consumption is 1.2 kg/hr having a calorific value of 39000 kJ/kg. The indicated mean effective pressure is 5.5 bar. If the compression ratio is 15 and cut off ratio is 1.8, calculate the relative efficiency taking $\nu = 1.4$.

The following data relates to four cylinder four stroke petrol engine:

Diameter of the piston = 80 mm Length of the stroke = 120 mm

Clearance volume $= 100 \times 10^3 \text{ mm}^3$ Fuel supply = 4.8 kg/hrCalorific value = 44000 kJ/kg

When the morse test was performed on the engine, the following data were recorded:

B.P. with all the cylinders working = 14.5 kw
B.P. with cylinder 1 cut-off = 9.8 kw
B.P. with cylinder 2 cut-off = 10.3 kw
B.P. with cylinder 3 cut-off = 10.14 kw
B.P. with cylinder 4 cut-off = 10.0 kw

Find I.P. of the engine and also calculate indicated thermal efficiency, brake thermal efficiency and relative efficiency. Also draw sketch of set-up.

Q.5 Give the classification of combustion chambers in C.I. Engines. Explain them with neat sketches. [10]

OR

Explain the different stages of combustion in S.I. Engines with neat sketch.

Q.6 What is need of alternative fuels? Classify them and discuss them. [10]

OR

Explain the rating of CI Engine fuels. Explain concept of "hybrid cars".

* * *