BACHELOR OF TECHNOLOGY (C.B.C.S.) (2014 COURSE) B.Tech.Sem - VI ELECTRONIC: WINTER- 2022 SUBJECT: DIGITAL SIGNAL PROCESSING

Day: Thursday

Time: 10:00 AM-01:00 PM

Date: 24-11-2022

W-13388-2022

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable CALCULATOR is allowed.
- 4) Assume suitable data if necessary.
- Q.1 Perform the circular convolution of the following sequences using concentric [10] circle method.

$$x(n) = \{3, 2, 4, 1\}, \quad h(n) = \{1, 2, 1, 2\}.$$

OR

State and explain following properties of DFT:

[10]

- i) Linearity
- ii) Periodicity
- iii) Multiplication

iv) Circular convolution

- v) Time reversal
- Q.2 Compute 8-point DFT of the following sequence using radix-2 DIT-FFT [10] algorithm:

$$x(n) = \{1, 0, 1, 0, 1, 0, 1, 0\}.$$

OR

[10]

Q.3 A LPF has the desired frequency response as given below:

[10]

$$\begin{split} H_{\scriptscriptstyle d}\left(e^{j\omega}\right) &= e^{-j3\omega} \quad ; \quad 0 \leq \omega \leq \frac{\pi}{2} \\ &= 0 \qquad ; \quad \frac{\pi}{2} \leq \omega \leq \pi \end{split}$$

Determine the filter coefficients h(n) for M = 7 using frequency sampling method.

OR

a) Explain in detail Gibb's phenomenon.

- [05]
- b) Obtain cascade and direct form realization with minimum number of [05] multipliers.

$$H(z) = (1+z^{-1})\left(\frac{1}{2}-\frac{1}{4}z^{-1}+\frac{1}{2}z^{-2}\right).$$

The system function of an analog filter is given by **Q.4** [10] $H(s) = \frac{s + 0.2}{(s + 0.2)^2 + 9}$. Convert it into digital filter using Impulse Invariance Method. Assume $T_s = 1$ second. OR Show that the bilinear transformation maps $j\omega$ axis in the s-plane onto unit circle in z-plane, and maps the left half of s-plane inside the unit circle in zplane. **b)** What is frequency warping effect? [05] Explain the method of scaling to prevent overflow limit cycle oscillations. Q.5 [10]Discuss in detail finite word length effects in FIR filters. [10] Q.6 a) Describe the multiplier and accumulator unit in DSP processor. [05] b) Explain in detail an application of DSP in speech processing. [05] OR What are the differences between fixed and floating point DSP processors? a) [05]b) With suitable example, explain the pipelining concept. [05]

* * * *