M.C.A. – V (2011 COURSE) (CBCS): WINTER – 2022 SUBJECT : FINITE AUTOMATA & GRAMMARS

Day: Monday

Time: 10:00 AM-TO 1:00 P.M.

Date: 26-12-2022

Max. Marks: 100

W-1184-3-2022

N.B.:

- 1) Attempt **ANY FOUR** questions from Section I and attempt **ANY TWO** questions from Section II.
- 2) Answers to both the sections should be written in **SEPARATE** answer books.
- 3) Figures to the right indicate FULL marks.

SECTION - I

Q.1 a) Prove that the following language is Not Regular. $L = \{a^n b^{n-1} \mid n > 0\}$ [07]

b) Construct FA for following Regular expressions ab(a + b) + ba(a + b)

[08]

- Q.2 a) Construct DFA for accepting strings starting with 0 and not having "012" as a [07] substring over {0, 1, 2}.
 - **b)** Construct equivalent DFA for the NFA where $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, q_0, \{q_1\}).$

[08]

δ	a	b
\mathbf{q}_0	$\{q_1, q_2, q_3\}$	$\{q_2, q_3\}$
q_1^*	$\{q_1,q_2\}$	$\{q_2, q_3\}$
q_2		$\{q_2, q_3, q_4\}$
q_3	{q ₄ }	$\{q_2, q_3, q_4\}$
q ₄		

Q.3 a) Convert the following Chomsky Normal Form (CNF) to Greibach Normal [07] Form (GNF).

 $S \rightarrow AB$

 $A \rightarrow BS \mid 0$

 $B \rightarrow SA \mid 1$

b) Find the CFL generated by the following grammar

[08]

 $S \rightarrow AB$

 $A \rightarrow aA \mid bB \mid a$

 $B \rightarrow Ba \mid Bb \mid a$

Q.4 a) Consider Grammar $G = (\{S, A\}, \{a, b\}, P, S)$ where P is

[07]

 $S \rightarrow aAS \mid a$

 $A \rightarrow SbA \mid SS \mid ba$

Draw left most derivation and right most derivation for the string.

i) "aabbaa"

ii) "aabaabaa"

b) Construct the Mealy and Moore Machine, which prints 'even' or 'odd' [08] according to number of occurrences of 1's in the string over {0, 1}.

P.T.O.

Q.5 a) Construct FA for following Regular Grammar:

 $S \rightarrow 0A \mid 1B$

 $A \rightarrow 0C \mid 1A \mid 0$

 $B \rightarrow 1B | 1A | 1$

 $C \rightarrow 0 \mid 0 A$

b) Simplify the following grammar:

[80]

[07]

 $S \to ABA$

 $A \rightarrow aA \mid \in$

 $B \rightarrow bB \mid \in$

SECTION - II

Construct the minimize DFA for the following DFA where **Q.6**

[20]

 $M = (\{A, B, C, D, E, F, G, H\}, \{0, 1\}, \delta, A, \{C\})$

δ	0	1
A	В	F
B C*	G	С
C*	A	С
D	С	G
E	Н	F
F	С	G
G	G	Е
Н	G	С

- **Q.7** Define Turing Machine with its type. Construct a Turing Machine, which [20] recognize well formedness of parenthesis over $\{[, (, \{,\},),]\}$
- **Q.8** Define PDA state differences between PDA and FA. Construct the PDA that [20] accepts languages as: $S \rightarrow aS \mid aSbS \mid a$.