BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2016 COURSE) S.Y.B.Sc.(Computer Science) Sem-IV: WINTER- 2022 SUBJECT: COMPUTATIONAL GEOMETRY

Day : Saturday Time : 02:00 PM-05:00 PM

Date: 10/12/2022 W-14894-2022 Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Use of non-programmable CALCULATOR is allowed.

Q.1 Attempt ANY TWO of the following:

(12)

- a) Show that the transformation matrix for rotation about the origin through an angle θ is $[T] = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.
- b) Using concatenated matrix, reflect the triangle ABC through the line y = 5 where A[1 3], B[2 4] and C[3 5].
- c) Find the combined transformation matrix for the following sequence of transformations:
 - i) Scaling in x and y co-ordinates by factors –1 and 2 respectively.
 - ii) Reflection through X-axis.
 - iii) Rotation about the origin through an angle $\theta = 270^{\circ}$.

Apply this combined transformation on the point P[2 -3].

Q.2 Attempt ANY TWO of the following:

(12)

- a) Obtain an algorithm to generate uniformly spaced n points on the circle $x^2 + y^2 = r^2$.
- **b)** Generate uniformly spaced 8 points on the ellipse, $\frac{x^2}{16} + \frac{y^2}{1} = 1$.
- c) Generate uniformly spaced three points on the parabolic segment in the first quadrant for $12 \le x \le 27$ for the parabola $y^2 = 12x$.

Q.3 Attempt ANY TWO of the following:

(12)

- a) Write an algorithm for reflection through any arbitrary plane in space i.e, plane ax + by + cz = d.
- b) Consider the line with direction rations 1, 1, 1 and passing through the origin. Determine angles through which the line should be rotated about X-axis and then about Y-axis, so that it coincides with Z-axis.
- c) Find parametric equation of a Be'zier curve determined by control points $B_0[2\ 1]$, $B_1[4\ 3]$, $B_2[6,\ 0.5]$ and hence find the position vector of the point corresponding to parameter value t=0.43.

Q.4	Attempt ANY	THREE of	f the	following:
-----	-------------	----------	-------	------------

(12)

- a) Find each of following transformation matrices:
 - i) Reflection through the line y = x.
 - ii) Rotation by 55⁰ about origin.
 - iii) Scaling in x co-ordinate by 2 units and y co-ordinate by $\frac{1}{4}$ units.
 - iv) Shearing in x direction by -2 units.
- b) A line x+y=3 is transformed to another line by using 2×2 transformation matrix $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Obtain the equation of resulting line.
- c) For position vectors $P_1[3\ 4]$ and $P_2[5\ 2]$ determine the parametric representation of the line segment between them. Also determine slope and tangent vector of the line segment.
- d) Define:
- i) Axonometric projection.
- ii) Perspective projection

Q.5 Attempt ANY FOUR of the following:

(12)

- a) Let $A[1\ 2]$, $B[3\ 6]$, and $[T] = \begin{bmatrix} 4 & 1 \\ 2 & 5 \end{bmatrix}$ be the transformation matrix. Let P divides AB in the ratio 4:3 then find $[P^*] = [P][T]$.
- **b)** Find the value of x on unit circle $x^2 + y^2 = 1$, given that y = 0.866.
- c) Find the value of $\delta\theta$ to generate 11 points on parabolic segment $y^2 = 4x$, $2 \le y \le 4$.
- d) Create bottom view of the object.
- e) Write transformation matrices for:
 - i) Shearing in y co-ordinate proportional to x co-ordinate by factor 4.
 - ii) Reflection through XY-plane.
- f) Write parametric equation of Be'zier curve with control points B_0 , B_1 , B_2 .

* * * *