MASTER OF SCIENCE (CHEMISTRY) (CBCS - 2018 COURSE) M.Sc. (Chemistry) Sem-III AC: WINTER- 2022

SUBJECT: THERMAL, RADIO & ELECTRO-ANALYTICAL METHODS

Date: 27-12-2022

W-20159-2022

.....

Max. Marks: 60

Time: 02:00 PM-05:00 PM

N.B.

Day: Tuesday

- All questions are **COMPULSORY**.
- Figures to the **RIGHT** indicate **FULL** marks. 2)
- Answer to both the sections should be written in **SEPARATE** answer book. 3)

SECTION - I

Q.1 Answer **ANY THREE** of the following.

(15)

- Explain in brief what is Hydrodynamic voltammetry?
- Describe in brief anodic stripping voltammetry. b)
- What are the applications of coulometric titrations? c)
- d) Explain the importance of i) supporting electrolyte and ii) Maxima Suppressor in Polarography.
- Draw a typical polarographic cell and explain its working and construction. e)

Answer ANY TWO of the following. Q.2 A)

(10)

- Describe 'Half wave potential and Oxygen interference' in polarographic analysis.
- What are the advantages and disadvantages of dropping mercury ii) electrode? Explain its principle and working.
- iii) Explain in brief square wave voltammetry.

Solve **ANY ONE** of the following.

(05)

- What is the diffusion current flowing through the cell containing the solution of Cd²⁺ ions having concentration 5 mM / lit if the drop rate is 4.5 seconds and rate of falling mercury is 4 mg/s. The diffusion coefficient of Cd^{2+} ion is 7.0×10^{-6} cm²/s.
- 100 ml solution of chloride is coulometrically titrated with Ag ion using a current 1mA. Calculate ion concentration of Cl⁻ if end point is detected after 102 seconds. (Given : Atomic weight of $Cl^- = 35.5$)

SECTION - II

Q.3 Answer ANY THREE of the following.

(15)

- What is TG? Describe a typical TG curve with suitable example. a)
- Describe NAA method to analyse metals. b)
- Explain DSC apparatus with description of each part.
- Describe thermometric titration with diagram and explain complexometric titration.
- Describe the effect of heat on material with suitable example.

Q.4 A) Answer ANY TWO of the following.

(10)

- Explain the principle and applications of spectro-electro chemistry.
- Explain the role of (n, γ) reaction in neutron activation analysis.
- What is isotopic dilution analysis? Explain how it I used in estimation of blood.

B) Solve ANY ONE of the following.

- (05)
- Calculate the percent weight changes (w%) for each of the following
 - a) $Ca(OH)_{2(s)} \rightarrow CaO_{(s)} + H_2O_{(g)}$

b) $6PbO_{(s)} + O_{2(g)} \rightarrow 2Pb_3 O_{4(g)}$ Given: Ca = 40, H = 1.01, O = 16.0, Pb = 207.2.

The activity in a 10 mL sample of waste water containing $^{90}_{38}Sr$ was found to be 9.17×10^6 dps. What is the molar concentration of $\frac{90}{38}$ Sr in the sample? The half-life of $^{90}_{38}Sr$ is 28 years.