MASTER OF SCIENCE (CHEMISTRY) (CBCS - 2018 COURSE) M.Sc. (Chemistry) Sem-III OC: WINTER- 2022

......

SUBJECT: SPECTROSCOPIC METHODS IN STRUCTURE DETERMINATION

Day: Thursday

Time: 02:00 PM-05:00 PM

Date: 29-12-2022 W-20151-2022 Max. Marks: 60

N.B.

1) All questions are COMPULSORY.

2) Figures to the right indicate **FULL** marks.

SECTION - I

Q.1 Explain ANY THREE of the following: (15)

- a) Intensities of methyl, methylene and methine carbons differ in ¹³ C NMR.
- **b)** Ter. Butyl fluoride in CMR shows a doublet at 1.5δ with J = 20Hz while, on adding SBF₅ it shows a singlet at 4.6δ .
- c) The mass spectrum of 3-butyn-2-ol shows base peak at m/z = 55. Why the fragment is strong?
- d) How will you distinguish the following isomeric esters by ¹HNMR PhCH₂OCOCH₃ and PhCOOCH₃?
- e) The -OH proton usually appears at a lower field in DMSO than CDCl₃.
- Q.2 Distinguish between ANY THREE of the following by given spectral (15) methods.

P.T.O.

SECTIION - II

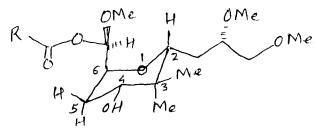
Q.3 Write notes on ANY THREE of the following:

(15)

- a) Maldi technique in mass spectroscopy.
- b) Methods for simplification of NMR. Explain one.
- c) N, N dimethyl formamide shows two signals for two methyl groups.
- d) AMX system
- e) Homo and Hetro nuclear correlated spectroscopy.

Q.4 Attempt **ANY THREE** of the following:

(15)


- a) On a 60 MHz instrument, the AB quartet show $\sigma_A = 112$ Hz, $\sigma_B = 120$ Hz, and $J_{AB} = 15$ Hz. Calculate the line positions of the four lines in Hz. Clearly write all the calculations.
- b) Explain the genesis of the following:

m/z = 130, 115, 100, 73, 43

c) Assign chemical shifts to various carbons present in the following compound.

- d) Deduce the structures using the following spectral data;
 - i) Mol for, $C_{10}H_{12}$; ¹HNMR : 0.65 (m, 2H), 0.81 (m, 2H) 1.37(S, 3H); 7.17(m, 5H)
 - ii) Mol for, $C_6H_8O_2$: CMR: 17(t), 21(t), 69(t), 120(s) 166(d), 191(d)
- e) ¹HNMR of the following compound exhibits the following signals. Assign the signals & justify. Use decoupling expt.

Note: give signals for only numbered protons

1.85 (ddd, J = 5, 10, 12 Hz, 1H); 2.10 (ddd, J = 3, 4, 12 Hz, 1H) 3.75(dd, J = 4, 10Hz, 1H); 3.85(ddd, 3, 5, 8 Hz, 1H)

3.75(dd, 5 - 4, 10112, 111), 3.65(ddd, 5, 5, 6 112, 111)

4.0 (dd, J = 3 & 7 Hz, 1H)

Decoupling Expt.

- i) Irradiation of 2.1 δ changes ddd at 1.85 to dd, J = 5 & 10 Hz 2.1 δ changes ddd at 3.85 to dd, J = 5 & 10 Hz 2.1 δ changes dd at 3.75 to d, J = 10 Hz
- ii) Irradiation of 3.85 δ changes ddd at 2.10 to dd, J = 4 & 12 Hz 3.85 δ changes ddd at 1.85 to dd, J = 10 & 12 Hz