MASTER OF SCIENCE (CHEMISTRY) (CBCS - 2018 COURSE) M.Sc. (Chemistry) Sem-II AC,OC: WINTER- 2022 SUBJECT: ORGANIC CHEMISTRY - II

Day: Monday

Time: 10:00 AM-01:00 PM

Date: 2/1/2023

W-20146-2022

Max. Marks: 60

N.B.:

a)

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Answers to both the sections should be written in **SEPARATE** answer book.
- 4) Draw neat labelled diagrams **WHEREVER** necessary.

SECTION-I

Q.1 Attempt any **THREE** of the following:

(15)

- a) What are phosphorous ylides? How are they prepared? Discuss their applications.
- b) What is Michael condensation? Discus its mechanism and applications.
- c) Discuss the preparation and applications of Organo-zine compounds.
- d) What is Birch reduction? Discuss its mechanism with suitable examples.
- e) Write a note on: Baeyer-Villiger oxidation.
- Q.2 Predict the product/s in any **THREE** of the following reactions by giving (15) mechanism. Justify your answer.

e)
$$CHO$$
 $i > NaBH4 | C_2H_5OH$
 $ii) H_2O | H \oplus$
 $ii) H_2O | H \oplus$

SECTION-II

Q.3 Attempt any **THREE** of the following:

a) Calculate λ_{max} for the following. Clearly show calculations.

b) Distinguish by IR. Justify answer.

c) Arrange in increasing order of λ_{max} . Justify answer.

PhCHO, PhH, PhCH₃, p. hydroxy benzaldehyde.

d) Arrange the following in increasing order of frequency. Justify.

e) Cis- cimamic acid absorbs at 268nm ($\in_{\text{max}} 10,760$) while, trans-isomer at 278nm ($\in_{\text{max}} 15,900$). Explain.

Q.4 Attempt any **THREE** of the following:

(15)

(15)

A compound having molecular formula C₇H₇O₂N is soluble in NaHCO₃. IR shows bands at: 3550, 3350, 2500,-3300 (br.), 1695cm⁻¹: Determine the structure

b) How will you check the progress of the following reactions sequence by IR spectroscopy?

c) Assign the structure using the given data:

Mol. formula: C₈H₈O₂

UV : 250, 260, 265nm

IR : 2500-3300 (very broad), 1721, 1600, 1500, 750, 700cm⁻¹

NMR : 3.5 δ (s, 12mm), 7.2 δ (s, 30mm)

12.3 δ (s, 6mm)

d) Determine the structure form the following data:

Mol. formula: C₇H₈O

UV : four bands in 250-280nm with low \in_{max} value.

IR : 3350 (br), 1600, 1500, 740, 690cm⁻¹

NMR: 3.8δ (s, 13mm)

4.3 δ (s, 26mm)

7.2 δ (s, 65mm)

e) Predict the structure using given data:

Mol. formula: C₇H₄O₃NCl

UV : 255nm (\in_{max} 12,000)

IR : 1770, 1590, 1510, 1350, 850cm⁻¹

NMR: (in CCl₄) 's' at 8.35 δ and

(in C₆H₅N) 8.03 δ (d, J= 8H_z, 12mm)

8.13 δ (d, J= 8Hz 12mm)

Table 1:

Some characteristic IR data in cm⁻¹. Only approximate values are listed.

= C-H 3050 \equiv C-H 3300, N-H 3300 O = C - H 2800, $C \equiv N 2250$ O - H 3600 (free), C = C 1620 - 1680 $C \equiv C 2200$, -C = N 1660Aromatic (C = C) 1600 to 1500, Saturated ester 1750 Saturated ketone 1720, Saturated aldehydes 1730, Saturated acids 1720, $CH = CH_2 900 \text{ and } 910$ Saturated amides 1650 CH = CH - (cis) 690CH = CH (trans) 960, $C = CH_2 890$ C = CH 790 - 840

Bands for aromatic compounds depends on the number of adjacent free aromatic hydrogens:

NO₂ 1530 and 1050

Table 2:

Approximate chemical shifts on methyl, methylene and methine protons, in δ values TMS as internal reference.

$C - CH_3 0.9,$	$O - C - CH_3 1.4$
$C = C - CH_3 1.6,$	$Ar - CH_3 2.3$,
$O = C - CH_3$ 2.2,	$N - CH_3 2.3$,
$S - CH_3 2.1,$	O - CH ₃ 3.3
C-H in cyclopropane 0.7,	$C = CH_2$ exocyclic 4.6,
$C = CH_2$ open chain 5.3	C – CH 5.1
$C \equiv CH \text{ cyclic } 5.3,$	Ar – H 7 to 9