BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2018 COURSE) S.Y.B.Sc.(Computer Science) Sem-IV: WINTER- 2022 SUBJECT: COMPUTATIONAL GEOMETRY

Max. Marks: 60 Date: 10/12/2022 W-20105-2022

N.B:

Day: Saturday

- All questions are **COMPULSORY**. 1)
- Figures to the right indicate FULL marks. 2)
- 3) Use of non programmable **CALCULATOR** is allowed.

Q.1 Attempt **ANY TWO** of the following:

(12)

Time: 02:00 PM-05:00 PM

- If the 2 x 2 transformation matrix transforms the point P and Q to the points P* and Q* respectively. If R divides segment PQ internally in the ratio m:n then its transformed point R* divides segment P*Q* internally in the ratio m:n.
- Find the concatenated matrix of shearing in x-direction by 2 units followed by translation in x-direction by 2 units and then rotation about origin through an angle 180°.
- c) Obtain the transformation matrix to reflect an object through the line x + 2y = 3.

Attempt ANY TWO of the following: **Q.2**

(12)

- Write an algorithm for reflection through any arbitrary plane in space i.e. plane ax + by + cz = d.
- Consider the line with direction ratios 1, -2, 2 passing through the origin. Determine the angles through which the line should be rotated about X-axis and then about Y-axis so that it coincides with Z-axis.
- Find the cavalier projection with $\alpha = 30^{\circ}$ and cabinet projection with $\alpha = 25^{\circ}$ of the object represented by the matrix, $X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$.

Q.3 Attempt ANY TWO of the following:

(12)

- Write an algorithm to generate equispaced n points on circumference of arc of circle with centre at (0,0) and radius r.
- Generate uniformly spaced 3 points on the hyperbolic segment in the first quadrant for $4 \le x \le 8$, where equation of the hyperbola is $\frac{x^2}{4} - \frac{y^2}{16} = 1$.
- Find parametric equation of Be'zier curve determined by control points $B_0[0\ 2]$, $B_1[2\ 3]$, $B_2[3\ 2]$, $B_3[2\ 0]$. Also find position vectors of the points on the curve corresponding to parameter value t=0.2, 0.4, 0.6.

Q.4	Attempt ANY T	HREE of the following:	
-----	---------------	------------------------	--

- a) Obtain the relation between θ and f_Z in diametric projection.
- **b)** Define the following:
 - i) Foreshortening factor
 - ii) Perspective projection
- c) Roate the line segment AB where $A[3 \ 3 \ 3], B[5 \ 5 \ 5]$ about the local X-axis passing through $P[2 \ 3 \ 1]$ about an angle 75° .
- d) Find an angle $\delta\theta$ to generate uniformly spaced 5 points on the circumference of a circle in the 2nd and 3rd quadrant.

Q.5 Attempt ANY FOUR of the following:

(12)

(12)

- a) The circle with radius 2 units is transformed by using transformation matrix $[T] = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$. Obtain the area of transformed figure.
- b) Write the transformation matrix for reflection through plane y = 4.
- c) Write the transformation matrix for orthographic projection create the top view of the object.
- d) Find the value of $\delta\theta$ to generate 11 points on the parabolic segment $y^2 = 4x, 2 \le y \le 4$.
- e) Write parametric equation of Be'zier curve with control points B_0 , B_1 , B_2 , B_3 .
- f) Define:
 - i) Affine transformation
 - ii) Solid body transformation

* * *