BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2018 COURSE) S.Y.B.Sc.(Computer Science) Sem-III : WINTER- 2022 SUBJECT : COMPUTER ORIENTED NUMERICAL METHODS

Day: Tuesday

Time: 10:00 AM-01:00 PM

Date: 13-12-2022

W-20094-2022

Max. Marks: 60

N.B.

1) All questions are **COMPULSORY**.

- 2) Figures to the right indicate **FULL** marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.

Q.1 Attempt any **TWO** of the following:

(12)

- a) Find the root of equation $x^5 + 5x + 1 = 0$ between x = -1 and x = 0 using bisection method.
- **b)** Find $\sqrt[3]{18}$ by Newton-Raphson method. (Perform 4 iterations)
- c) Use the method of least squares to fit the straight line y = a + bx to the data given below:

x	1	2	4	5	6	8	9
y	2	5	7	10	12	15	19

Q.2 Attempt any **TWO** of the following:

(12)

a) Find the number of students who obtained less than 45 marks, from the following data:

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31

b) Using Lagrange's interpolation formula, find y(10) from the following data:

y	5	6	9	11
Y	12	13	14	16

Solve $\frac{dy}{dx} - 1 = y^2$, given y(0) = 0, h = 0.05 using Euler's method and obtain y(0.05), y(0.1) and y(0.15).

Q.3 Attempt any TWO of the following:

(12)

- a) Calculate approximate value of $\int_{1}^{3} \frac{1}{x} dx$ by using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule with 4 strips and 8 strips.
- Evaluate the integral $\int_{0}^{\pi/2} \sin x dx$ by using Trapezoidal rule. Take $h = \frac{\pi}{20}$.
- c) Use the Runge-Kutta fourth order method to find the value of y(1) given that y(0) = 1 and $\frac{dy}{dx} = \frac{y x}{y + x}$.

- **Q.4** Attempt any **THREE** of the following:
 - a) What do you mean by dummy activity? Why it is used in network?
 - **b)** Show that $\nabla \equiv 1 E^{-1}$.
 - c) Use least square method to fit a polynomial of first degree to the following data:

X	0	1	2	3
y	1	6	17	34

d) State and derive Simpson's $\left(\frac{3}{8}\right)^{th}$ rule.

Q.5 Attempt any FOUR of the following:

(12)

(12)

a) Draw a network diagram for the following activities:

Activity	A	В	С	D	Е	F	G	Н	I	J	K
Predecessor	-	Α	Α	A	В	C	С	C,D	E,F	G,H	I,J

- **b)** Briefly mention the advantages of PERT.
- c) Construct a backward difference table from the values of x and y given below:

х	10	20	30	40	50	
y=f(x)	45	65	80	92	100	

- d) If $x_0 = 0.5$ and x = 1, then find next three approximations to root of the equation $xe^x 2 = 0$ by false position method.
- e) Locate the error in the following: -1, 0, 7, 26, 65, 124, 215, 342, 511
- f) Obtain Taylor series for $\frac{dy}{dx} = 1 + xy$ with y(0) = 1.

* *