BACHELOR OF SCIENCE (CBCS-2018 COURSE)

S. Y. B. Sc. Sem-IV : WINTER- 2022

SUBJECT: MATHEMATICS: VECTOR CALCULUS

Day: Thursday

Time: 02:00 PM-05:00 PM

Date: 15-12-2022

W-18392-2022

Max. Marks: 60

N.B.

- All questions are **COMPULSORY**. 1)
- Figures to the **RIGHT** indicate **FULL** marks. 2)
- 3) Use of non-programmable calculator is **ALLOWED**.

Q.1 Attempt ANY TWO of the following:

(12)

- a) A differentiable vector function $\bar{u}(t)$ on [a, b] is of constant magnitude if and only if $\overline{u} \cdot \frac{d\overline{u}}{dt} = 0$, $\forall t \in [a, b]$.
- **b)** If $\bar{a} = t^2 \hat{i} + t \hat{j} + (2t+1)\hat{k}$ and $\bar{b} = (2t-3)\hat{i} + \hat{j} t \hat{k}$ find:
- i) $\frac{d}{dt}(\bar{a}.\bar{b})$ ii) $\frac{d}{dt}(\bar{a}\times\frac{d\bar{b}}{dt})$ iii) $\frac{d}{dt}(\bar{a}+\bar{b})$ at t=1.
- c) If $\phi = x y z^2$ and $\bar{a} = 3x^2 y \hat{i} + y z^2 \hat{j} + x y z \hat{k}$, find $\frac{\partial^2 (\phi \bar{a})}{\partial y \partial z}$ at (-1, 1, 2).

Q.2 Attempt **ANY TWO** of the following:

(12)

- a) If \overline{u} be a vector point function and ϕ be a scalar point function then prove that $\nabla \times (\phi \overline{u}) = (\nabla \phi) \times \overline{u} + \phi (\nabla \times \overline{u}) .$
- **b)** Find the directional derivative of $\phi = xy^2 + yz^3$ at the point (2,-1, 1) in the direction of $\hat{i} + 2\hat{j} + 2\hat{k}$.

c) If
$$\vec{r} = x \cos y \hat{i} + y \sin y \hat{j} + a e^{my} \hat{k}$$
, find
$$\frac{\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}}{\left| \frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y} \right|}$$
.

Q.3 Attempt ANY TWO of the following:

(12)

- **a)** If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $|\vec{r}| = r = \sqrt{x^2 + y^2 + z^2}$, then prove that
 - $\nabla \phi(\mathbf{r}) = \phi'(\mathbf{r}) \nabla \mathbf{r}$.
 - ∇r is the unit vector \hat{r} .
 - iii) $\nabla \log r = \frac{r}{r^2} .$

P.T.O.

- **b)** Evaluate $\oint_C \left(e^{-x} \sin y \, dx + e^{-x} \cos y \, dy \right)$ where C is the rectangle formed by $x = 0, \ x = \pi, \ y = 0, \ y = \frac{\pi}{2}$.
- Verify Stoke's theorem for the vector field $\overline{f} = 4xz\hat{i} y^2\hat{j} + yz\hat{k}$ over the area in the plane z = 0 bounded by x = 0, y = 0 and $x^2 + y^2 = 1$.

Q.4 Attempt ANY THREE of the following:

(12)

- **a)** If $\vec{r} = \frac{a}{2}(x+y)\hat{i} + \frac{b}{2}(x-y)\hat{j} + xy\hat{k}$ find: i) $\left[\frac{\partial \vec{r}}{\partial x}, \frac{\partial \vec{r}}{\partial y}, \frac{\partial^2 \vec{r}}{\partial x^2}\right]$ and ii) $\left[\frac{\partial \vec{r}}{\partial x}, \frac{\partial \vec{r}}{\partial y}, \frac{\partial^2 \vec{r}}{\partial x^2}\right]$.
- **b)** A particle moves along the curve $\bar{r} = (t^3 4t)\hat{i} + (t^2 + 4t)\hat{j} + (8t^2 3t^3)\hat{k}$. Find the magnitude of the tangential and normal components of its acceleration at time t = 2.
- c) Find the total work done in moving a particle in a force field $\bar{f} = 3x y \hat{i} 5z \hat{j} + 10x \hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- d) Evaluate $\iint_S \phi n \, ds$, where $\phi = \frac{3x \, y \, z}{8}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.

Q.5 Attempt ANY FOUR of the following:

(12)

- a) Show that if $\bar{v}(t)$ is differentiable at $t = t_0$ then it is continuous at $t = t_0$.
- b) Find the angle between the surfaces $x \log z = y^2 1$, $x^2y = 2 z$ at the point (1,1,1)
- **c)** Whether $\overline{f} = (y + \sin z)\hat{i} + x\hat{j} + (x + \cos z)\hat{k}$ is irrotational vector field?
- **d)** Evaluate $\int_{0}^{2} \overline{f} \times \overline{g} dt$ where $\overline{f}(t) = t\hat{i} t^2 \hat{j} + (t-1)\hat{k}$ and $\overline{g}(t) = 2t^2 \hat{i} + 6t \hat{k}$.
- e) Eliminate \bar{a} and \bar{b} from $\bar{r} = \bar{a}\cos 2t + \bar{b}\sin 2t$ and obtain the differential equation.
- **f)** If $\overline{a} = t^2 \hat{i} t \hat{j} + (2t+1)\hat{k}$ and $\overline{b} = (2t-3)\hat{i} + \hat{j} t\hat{k}$, find $\frac{d}{dt}(\overline{a}.\overline{b})$.
