BACHELOR OF SCIENCE (CBCS-2018 COURSE)

T. Y. B. Sc. Sem-V : WINTER- 2022

SUBJECT : CHEMISTRY : PHYSICAL CHEMISTRY-I

Date: 7/12/2022 W-18414-2022 Max. Marks: 60

......

N.B.

Day: Wednesday

- 1) All questions are **COMPULSORY**.
- 2) Figures to the **RIGHT** indicate **FULL** marks.
- 3) Use of log table / scientific **CALCULATOR** is allowed.
- 4) Draw neat diagrams **WHEREVER** necessary.

Q.1 Attempt ANY TWO of the following:

(12)

Time: 02:00 PM-05:00 PM

- a) Define the term absorption. Distinguish between physical and chemical adsorptions.
- **b)** Give the definitions of transmittance, opacity and optical density.
- c) Obtain the expression for Nerust's equation for electrode potential.

Q.2 Attempt **ANY TWO** of the following:

(12)

- a) What is the principle of colorimetry? Give applications of Beer's law.
- **b)** What are the assumptions of Langmuir's theory?
- c) Write BET equation and state meanings of the terms involved in it.
- **Q.3** Attempt **ANY TWO** of the following:

(12)

- a) How the surface area of adsorbent is determined by using BET equation?
- **b)** Explain metal-metal ion electrode with suitable examples.
- c) What do you understand by reversible and irreversible cells?
- **Q.4** Attempt **ANY THREE** of the following:

(12)

a) Calculate the potential of the cell at 298 K. $Zn_{(s)} \mid ZnCl_2 (a=0.0072) \mid AgCl_{(s)} \mid Ag$

 $Zn_{(s)} \mid ZnCl_2 \text{ (a=0.00/2)} \mid AgCl_{(s)} \mid Ag$ Given: $E^0_{Zn} = -0.761 \text{ V}$ and $E^0_{Ag-AgCl} = 0.222 \text{ V}$.

- **b)** A solution of KMnO₄ shows 0.8 absorbance at wavelength 540 nm. Express the measurements in terms of transmittance unit.
- When a solution of concentration 1×10^{-2} M is placed in a cell of path length 4 cm shows an absorbance of 0.5. What will be the absorbance of solution, if it is placed in a cell of path length of 1 cm.?
- d) A cell consisting of hydrogen electrode at 1 bar pressure and normal calomel electrode connected by a normal KCl bridge has a potential of 0.602 V at 298 K. calculate the pH of the solution.

Given: i) Std. Reduction potential of normal calomel electrode = 0.28 V.

ii)
$$\frac{2.303RT}{F} = 0.0591$$

Q.5 Attempt ANY FOUR of the following:

(12)

- a) What are the advantages of colorimetry?
- **b)** Define the terms adsorbent and adsorbate.
- c) What is photoelectric effect? What are its characteristics?
- d) Explain in brief theory of Colorimetry.
- e) What is Heisenberg's equation? What are the applications of uncertainty principle?
- f) How will you determine equilibrium constant from cell emf?
