BACHELOR OF SCIENCE (CBCS-2018 COURSE)

S. Y. B. Sc. Sem-IV : WINTER- 2022

SUBJECT: MATHEMATICS: COMPLEX VARIABLES

Day : Saturday Time : 02:00 PM-05:00 PM

Date: 17-12-2022 W-18393-2022 Max. Marks: 60

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the **RIGHT** indicate **FULL** marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.

Q.1 Attempt ANY TWO of the following:

(12)

- a) A function f(z) = u(x, y) + iv(x, y) is continuous at $z_0 = x_0 + iy_0$ if and only if u(x, y) and v(x, y) are both continuous at (x_0, y_0) .
- **b)** Prove that if $\lim_{z \to z_0} f(z)$ exists, then it is unique.
- c) Show that for a function $f(z) = e^{\overline{z}}$, f(z) is not analytic for any z.

Q.2 Attempt ANY TWO of the following:

(12)

- a) Show that the function $u = \frac{1}{2} \log(x^2 + y^2)$ is Harmonic and find its Harmonic conjugate.
- **b)** Verify the Cauchy Gourast theorem for f(z)=z+2 taken around the unit circle |z|=1.
- c) Prove that an analytic function with constant argument is constant.

Q.3 Attempt ANY TWO of the following:

(12)

- a) Prove that if f(z) has a simple pole at $z = z_0$ then the residue of f(z) at $z = z_0$ is $\lim_{z \to z_0} (z z_0) f(z)$.
- **b)** Evaluate by contour integration $\int_C \frac{3z^2+2}{(z-1)(z^2+9)} dz$ where C is a circle |z|=4.
- c) Find the value of integral $\int_{-x}^{\infty} \frac{x^2 x + 2}{x^4 + 10x^2 + 9} dx$ by using residue.

Q.4 Attempt **ANY THREE** of the following:

(12)

- a) Determine the point of discontinuities of the function $f(z) = \frac{2z-3}{z^2-2z+2}$.
- **b)** If both f(z) and $\overline{f(z)}$ are analytic functions of z then prove that f(z) is constant.
- c) Evaluate $\int_{C} \frac{e^{z}}{(z^{2}+1)^{2}} dz$, where C is the circle |z-1|=3.
- d) Find the residue of $f(z) = \frac{z^2}{(z-1)(z-2)(z-3)}$ at its simple pole.

Q.5 Attempt ANY FOUR of the following:

(12)

- a) Evaluate $\lim_{z \to i} \frac{i z^3 1}{z + i}$.
- State Cauchy-Gourast Theorem.
- Evaluate $\int_C \frac{z+6}{z^2-4} dz$, where C is the circle |z|=1.
- Determine the poles and their orders for the function $f(z) = \frac{1}{(z-5)^3(z-4)^2}$.

Discuss the continuity of the function
$$f(z)$$
 at $z = 2i$, if
$$f(z) = \frac{z^2 + 4}{z - 2i}$$
, if $z \neq 2i$.
$$= 3 + 4i$$
, if $z = 2i$

f) Prove that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exists.