BACHELOR OF SCIENCE (CBCS-2018 COURSE)

S. Y. B. Sc. Sem-III : WINTER- 2022

SUBJECT: MATHEMATICS: GROUP THEORY & DIFFERENTIAL EQUATIONS

Day: Tuesday Time: 10:00 AM-01:00 PM

Date: 20-12-2022 W-18363-2022 Max. Marks: 60

 $\overline{\text{N.B.}}$

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q.1 Attempt **ANY TWO** of the following:

[12]

- a) Let $S = \{1, -1, i, -i\}$ and '*' is a usual multiplication of complex numbers then show that (S, *) is an abelian group.
- **b)** Let G be a group. If $a, b \in G$ then prove that $(b^{-1}ab)^m = b^{-1}a^mb$, $\forall m \in \mathbb{N}$
- c) Show that intersection of two subgroups of a group is subgroup. Is union of two subgroups of a group is subgroup? Justify.

Q.2 Attempt **ANY TWO** of the following:

[12]

- a) Prove that a non-empty set H of a group G is a subgroup of G if and only if $ab^{-1} \in H$, $\forall a, b \in H$.
- **b)** Let G be a group of all non-zero complex numbers a + ib, under multiplication. Let $H = \{a + ib/a^2 + b^2 = 1\}$. Show that H is a subgroup of G.
- c) Show that the group $(Z_4, +_4)$ of residue classes modulo 4 under addition modulo 4 is cyclic. Find all its generators. Find all the proper and improper subgroups.

Q.3 Attempt **ANY TWO** of the following:

[12]

- Show that for the equation f(D)y = X, when $X = e^{ax}$ particular integral is $\frac{1}{f(D)}e^{ax} = \frac{e^{ax}}{f(a)}$, if $f(a) \neq 0$.
- **b)** Solve: $(D^2 + 9)y = x \sin x$.
- c) Solve: $(D^2 + 4D + 4)y = e^{-2x} + x^3$.

Q.4 Attempt **ANY THREE** of the following:

[12]

- a) Solve the differential equation $y = 2px + p^2y$, where $p = \frac{dy}{dx}$.
- **b)** Solve : $\left(\frac{dy}{dx}\right)^2 5\left(\frac{dy}{dx}\right) + 6 = 0$.

c) Solve:
$$y + px = x^4p^2$$
, where $p = \frac{dy}{dx}$.

P.T.O.

- Show that the substitutions $x^2 = u$ and $y^2 = v$ converts equation (px y)(py + x) = 2p into Clairaut's equation and hence solve it.
- Q.5 Attempt ANY FOUR of the following: [12]
 - a) Find the complementary solution of $(D^2 + 2D + 5)y = x \sin 2x$.
 - b) Solve: i) $y = px + \sqrt{a^2p^2 + b^2}$ ii) $(y - px)^2 = 1 + p^2$ iii) $y - 2px = f(p^2)$
 - c) Define: i) Group ii) Semi-group iii) Cyclic group
 - d) Find all the subgroups of a cyclic group of order 24.
 - e) Prove that in any group every element has unique inverse.
 - f) Solve: $(D^3 + 7D^2 + 16D + 10)y = 0$.

* * *