BACHELOR OF SCIENCE (CBCS-2018 COURSE)

F. Y. B. Sc. Sem-II : WINTER- 2022

SUBJECT: STATISTICS: DISCRETE PROBABILITY & PROBABILITY

DISTRIBUTIONS-II

Day: Wednesday

Time: 02:00 PM-05:00 PM

Date: 21-12-2022

W-18338-2022

Max. Marks: 60

N.B.

- All questions are **COMPULSORY**. 1)
- Figures to the right indicate FULL marks. 2)
- Use of non-programmable calculator is allowed. 3)

Q.1 Attempt **ANY TWO** of the following:

(12)

- Suppose *x* and *y* are two discrete r.v.s. then $var(ax + by) = a^{2} var(x) + b^{2} var(y) + 2ab cov(x, y)$
- b) State and prove lack of memory property of geometric distribution.
- Suppose x_1, x_2, x_3 are three discrete r.v.s. with means 10, 20 and 40 and s.d.s

2, 4 and 6 respectively. Further
$$\rho(x_1, x_2) = \frac{1}{4} = \rho(x_1, x_3)$$
 and $\rho(x_2, x_3) = \frac{1}{2}$.

- i) $E(4x_1 + 2x_2 3 \times 3)$ ii) $var(3x_1 2x_2 + x_3)$
- iii) $var(x_3 x_2 x_1)$ iv) $cov(2x_1 + 3, 4 3x_2)$ v) $\rho(3x_2 3, x_3 + 1)$ vi) $\rho(4 + x_2, 5 2x_3)$

Attempt ANY TWO of the following: **Q.2**

(12)

- a) Derive M.G.F. of Poisson distribution and coefficient of Skewness and Kurtosis.
- **b)** Define $(r,s)^{th}$ row moments (μ'_{rs}) of a discrete bivariate distribution of (x,y). Hence show $\mu'_{10} = E(x)$ $\mu'_{01} = E(y)$, $\mu'_{11} = E(xy)$
- c) Obtain mean and variance of geometric distribution.

Attempt ANY TWO of the following: **Q.3**

(12)

a) Let (x,y) be a discrete bivariate r.v. with the following p.m.f.

y	0	1	2	3
0	k	3k	2k	4k
1	2k	6k	4k	8k
2	3k	9k	6k	12k

i) Find k ii) Are x and y independent? iii) $P(x + y \le 1)$

iv) $P(x^2 + y^2 \le 4)$

b) For the following joint probability distribution of (x,y) compute $\rho(x,y)$ the correlation coefficient between x & y.

y	0	1	2
0	1/4	0	1/4
1	1/8	1/8	1/4

c) If $x \to \text{Poisson (m)}$ such that $P(x = 0) = \frac{1}{2}$, find E(x) and var(x).

Q.4 Attempt **ANY THREE** of the following:

(12)

- **a)** Find the recurrence relation between the probabilities of Poisson distribution. State its use.
- **b)** Following are the marginal p.m.f. of x and y.

Х	1	2	3
P(x)	0.3	0.3	0.4

у	1	2	3
P(y)	0.1	0.6	0.3

Assuming x and y to be independent. Obtain the joint probability distribution of x and y.

- c) Prove that
 - i) cov(ax, by) = ab cov(x, y)
 - ii) cov(x+c, y+d) = cov(x, y)
 - iii) cov(x, x) = var(x)
- Let $x \to \text{poisson (m)}$ such that $P(x=2) = \frac{3}{4}P(x=1)$. Find P(x=0) and the most probable value of x.

Q.5 Attempt **ANY THREE** of the following:

(12)

- a) Show that all the cumulants of poisson distribution are equal to the parameter *m*.
- b) State four real life situations in which geometric distribution can be applied.
- c) Define conditional probability distribution of x given y = yj.
- **d)** Suppose x and y are two discrete r.v.s with joint probability distribution $\{(xi, yj, pij); I = 1...m; j = 1..n\}.$
- **e)** Two beads are selected at random without replacement from a bowl containing 4 blue, 1 red and 2 black beads. Let *x* denote the number of red beads drawn. *Y* denote the number of black beads drawn:
 - i) Find the joint p.m.f. of (x, y)
 - ii) Obtain the marginal p.m.fs of x and y.
 - iii) Calculate $P(x \le y)$
- f) Show that all the cumulants of poisson distribution are equal to the parameter m.