BACHELOR OF SCIENCE (CBCS-2018 COURSE) S. Y. B. Sc. Sem-III : WINTER- 2022

SUBJECT: PHYSICS: MATHEMATICAL METHODS FOR PHYSICS

Day : Thursday Time : 10:00 AM-01:00 PM
Date : 8/12/2022 W-18347-2022 Max. Marks : 60

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.

Q.1 Attempt **ANY TWO** of the following:

(12)

- a) Find the directional derivative of the scalar function $f(x, y, z) = x^2 + xy + z^2$ at the point A(1,-1,-1) in the direction of the line AB where B has co-ordinates (3, 2, 1).
- **b)** If $\overrightarrow{A} = 2\hat{i} + 3\hat{j} + 5\hat{k}$, $\overrightarrow{B} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{C} = 2\hat{i} + \hat{j} + 3\hat{k}$, Show that : $\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B} \cdot (\overrightarrow{C} \times \overrightarrow{A}) = \overrightarrow{C} \cdot (\overrightarrow{A} \times \overrightarrow{B})$.
- c) If $F = f(x, y) = x^3 y e^{xy}$. Show that $F_{yx} = F_{xy}$.

Q.2 Attempt ANY TWO of the following:

(12)

- a) Using total differentiation, find approximate value of $\sqrt{(4.99)^2 + (12.02)^2}$.
- b) Find the scalar and vector product of two vectors \vec{A} and \vec{B} , where $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = 4\hat{i} + 2\hat{j} + 3\hat{k}$. Also find the angle between \vec{A} and \vec{B} .
- c) Find the directional derivative of the scalar point function $\phi = x^2y + y^2z + z^2x$ at the point (2, 2, 2) in the direction of the normal to the surface $4x^2y + 2z^2 = 2$ at the point (2, -1, 3).

Q.3 Attempt ANY TWO of the following:

(12)

- a) Find the projection of vector $\vec{B} = \hat{i} + 5\hat{j} + 3\hat{k}$ on the vector $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$.
- **b)** If u = x + y + z, $v = x^2 + y^2 + z^2$, w = yx + 2x + xy prove that grad u and grad v and grad v are coplanar vector.
- c) $F = a \ln(x^2 + y^2)$, show that $F_{xy} = F_{yx}$ and $F_{xx} + F_{yy} = 0$.

Q.4 Attempt ANY THREE of the following:

(12)

- a) Show that given three vectors $\vec{A} = 2\hat{i} \hat{j} \hat{k}$, $\vec{B} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{C} = 3\hat{i} + 2\hat{j} 5\hat{k}$, are coplanar.
- **b)** Find the modulus of $\frac{i+2i}{1-3i}$.
- c) Show that $z = f(x+ct) + \phi(x-ct)$ is a solution of $\frac{\partial^2 z}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 z}{\partial t^2}$ for all f and ϕ .
- d) Show that $F = \cos y \hat{i} x \sin y \hat{j} \cos z \hat{k}$ is a conservative field.

Q.5 Attempt ANY FOUR of the following:

(12)

- a) Define degree, order and homogeneity of a differential equation $\frac{d^2y}{dx^3} + \sqrt{\frac{d^2y}{dx^2}} + x = 0.$
- **b)** Evaluate $\nabla^2(\ln r)$.
- c) Find the slope of the tangent to the curve $x^3 + 3xy^2 y^3 = 0$ at x = 2 and y = -3.
- **d)** Find the angle between $\vec{A} = 2\hat{i} + 2\hat{j} \hat{k}$, and $\vec{B} = 6\hat{i} 23 + 2\hat{k}$.
- e) Determine the value of 'P' so that $\vec{A} = 3\hat{i} + P\hat{j} + \hat{k}$ and $\vec{B} = 4\hat{i} 2\hat{j} 2\hat{k}$ are perpendicular.
- f) Determine the value of x and y; if $x + iy = (1 + i\sqrt{3})^4$.

*