BACHELOR OF SCIENCE (CBCS-2018 COURSE)

F. Y. B. Sc. Sem-I : WINTER- 2022

SUBJECT: STATISTICS: DISCRETE PROBABILITY & PROBABILITY

DISTRIBUTIONS-I

Day: Wednesday

Time: 10:00 AM-01:00 PM

Date: 21-12-2022

W-18311-2022

Max. Marks: 60

N.B.:

- All questions are **COMPULSORY**. 1)
- 2) Figures to the right indicate FULL marks.
- Use of statistical tables and CALCULATOR is allowed. 3)

Attempt ANY TWO of the following: Q.1

[12]

- If A and B be two events define on Ω , then prove that:
 - $P(A) \leq P(B)$ when $A \subset B$.
 - ii) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- b) Define cumulative distribution function and state its properties.
- A factory employees both male and female workers. The probability that a worker chosen at random is male is 0.65, that the worker is married is 0.7 and that the worker is a married male is 0.47. Find the probability that a worker chosen at random is:
 - a married female i)
 - a male or married or both ii)
 - a unmarried male

Attempt ANY TWO of the following: **Q.2**

[12]

- a) Define mutual independent and pairwise independence with illustrations.
- The following is a p.m.f. of r.v. X. **b**)

X	-3	-1	0	1	2	3	5	8
P(x)	0.1	0.2	0.15	0.2	0.1	0.15	0.05	0.05

- Find: i) P(0 < X < 2)
- ii) cumulative distribution function of X.
- P(X is odd) iii)
- e) The p.m.f. of a discrete r.v. X is $p(x) = \frac{1}{15}$, $x = 1, 2, \dots, 15$. Find:
 - i) E(X)
- ii) Var(X) iii) Var(3X + 5) iv) E(5 4X)

Q.3 Attempt ANY TWO of the following:

[12]

- Define binomial distribution with parameters n and p. Find its mean and a) variance.
- b) Define m.g.f. of discrete r.v. X. State its properties

P.T.O.

A r.v. X has the following probability distribution

X	0	1	2	3
P(x)	1	2	1	1
	$\frac{1}{5}$	5	5	5

Find the probability distribution of:

i)
$$W = X - 1$$

i)
$$W = X - 1$$
 ii) $Y = \frac{3X + 2}{2}$ iii) $Z = X^2 + 2$.

iii)
$$Z = X^2 + 2$$
.

Attempt ANY THREE of the following: **Q.4**

[12]

- Explain the following terms with illustrations:
 - i) Exhaustive events
 - ii) Complement of an event
- Define probability model. State the axioms of probability.
- Check whether the following functions can be looked upon p.m.f. of X.

i)
$$p(x) = \frac{x+1}{10}$$
, $x = 0, 1, 2, 3$

i)
$$p(x) = \frac{x+1}{10}$$
, $x = 0, 1, 2, 3$
ii) $p(x) = \frac{x-2}{5}$, $x = 1, 2, 3, 4, 5$

For a discrete r.v. X, E (X) = 20 and Var (X) = 9. Find the positive values of 'a' and 'b' such that Y = aX - b has mean 0 and variance 1.

Q.5 Attempt ANY FOUR of the following:

[12]

- Give two real life situation where hypergeometric distribution is applicable.
- Define median and mode of a discrete probability distribution. b)
- The probability distribution of a discrete r.v. X is as follows:

X	0	1	2	
P(X = x)	0.25	0.50	0.25	

Find: i) P(X > 1 | X > 0)

- **ii)** E(X).
- d) If A and B are independent with P(A) = 0.5, P(B) = 0.4. Find: i) $P(A' \cap B)$ ii) $P(A' \cap B')$.
- e) Let A and B be two events defined as sample space Ω such that $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{2}$, $P(A|B) = \frac{1}{4}$. Prove that A and B are independent.