## BACHELOR OF SCIENCE (CBCS-2018 COURSE) T. Y. B. Sc. Sem-VI :SUMMER- 2022

## SUBJECT: PHYSICS: THERMODYNAMICS & STATISTICAL PHYSICS

Time: 11:00 AM-02:00 PM Day: Tuesday S-18466-2022 Max. Marks: 60 Date: 12/7/2022 N.R.: 1) All questions are **COMPULSORY**. 2) Figures to the **RIGHT** indicate full marks. 3) Draw neat labeled diagrams WHEREVER necessary. **Q. 1** Attempt any **Two** of the following. (12)(a) Explain the fundamental assumptions of Kinetic theory of gas. (b) Derive an expression for the coefficient of viscosity of gas  $(\eta)$  in terms of mean free path. (c) Determine the mean free path of the molecule of hydrogen at NTP, given that density of hydrogen is  $8.96 \times 10^{-5}$  g cm<sup>-3</sup>, coefficient of viscosity  $8.6 \times 10^{-5}$  C.G.S. units and  $k = 1.38 \times 10^{-16}$  ergs  $^{o}K^{-1}$ . **Q. 2** Attempt any **Two** of the following. (12)(a) Derive and explain the Maxwell's Relation. (b) With neat suitable diagram explain the porous plug experiment. (c) Show that for an ideal gas Cp - Cv = R and for a real gas obeying Vander Waals equation  $Cp - Cv = R\{1+2a/RTV\}$  approximately. **Q. 3** Attempt any **Two** of the following. (12)(a) Derive binomial expression for random walk problem. **(b)** Explain the thermal interaction mechanism. (c) Describe Gibbs and Helmholtz function. **Q. 4** Attempt any **Three** of the following. (12)(a) Calculate the change in entropy when 10 grams of ice at 0 °C is converted into water at the same temperature. (Given: Latent heat of ice = 80 cal/gram). **(b)** Explain air liquefier with suitable diagram. (c) Explain the behavior of density of states of system **(d)** Write a short note on ensemble. Q. 5 Attempt any Four of the following. (12)(a) Describe the probability distribution function. (b) The diameter of molecule of a gas is  $2.3 \times 10^{-10}$  m. The mean free path is 2.05 $\times$  10<sup>-7</sup> m. Calculate the number of molecules of the gas per c.c. (c) Explain the terms: i) Entropy ii) Enthalpy (d) Explain the variation of Cv with pressure. (e) Write a short note on transport phenomena. (f) Describe the terms canonical and micro canonical ensemble.