BACHELOR OF SCIENCE (CBCS-2018 COURSE) S. Y. B. Sc. Sem-IV :SUMMER- 2022 **SUBJECT: PHYSICS: ELECTRONICS**

Time: 03:00 PM-06:00 PM Day: Monday Max. Marks: 60 S-18378-2022 Date: 4/7/2022 N.B.

- All questions are **COMPULSORY**. 1)
- Figures to the right indicate FULL marks. 2)
- Draw diagrams WHEREVER necessary. 3)
- Use of **SCIENTIFIC** calculator is allowed. 4)
- Answer **ANY TWO** of the following: **Q.1**

(12)

- With neat diagram explain the input and output characteristic curve for a) transistor in CE-mode.
- State the different biasing methods for transistor. Explain any one in detail. b)
- Give the symbols, truth table and Boolean equations for the following gates: c)
 - NOR
- ii) NAND
- iii) EX-NOR
- 0.2 Answer **ANY TWO** of the following:

(12)

- Explain the action of NPN transistor with necessary diagram. a)
- Explain the construction and working of UJT. b)
- Give the statement of Thevenin's theorem. c)
 - ii) Using Thevenin's theorem, determine the current flowing through R_L of the network given below.

Answer ANY TWO of the following: Q.3

(12)

- Draw well labelled diagram for RC coupled CE-amplifier. Explain it in brief. a)
- b) Explain RS Flip-Flop using NAND gates with diagram and truth table.
- Explain the working principle of Switch Mode Power Supply with necessary c) diagram.
- 0.4 Answer **ANY THREE** of the following:

(12)

- With necessary diagram explain the working of full wave rectifier. a)
- In a CE transistor amplifier the R_C in the collector circuit is 4 k Ω and V_{cc} =12 b) V. Find the co-ordinates of the operating point if the zero signal base current is 20 μ A and β = 100.
- Give the statement of: c)
 - i) Maximum Power Transfer theorem
 - Superposition theorem ii)
- Give the Barkhausen criteria for sustained oscillations. d)
- 0.5 Answer **ANY FOUR** of the following:

(12)

- Perform the following conversions: a)
 - $(9AF)_{16} = (?)_{10}$ i)
- ii) $(2598)_{10} = (?)_{16}$
- iii) $(237)_{10} = (?)_{BCD}$

- **b)** Simplify the following expressions:
 - i) $(\overline{A.B})(B.C)(C.\overline{D})$
 - ii) $\overline{\overline{AB} + A + AB}$
- c) Verify De-Morgan's first theorem.
- d) i) Define intrinsic stand off ratio for UJT.
 - ii) The intrinsic stand off ratio for UJT is 0.6. If interbase resistance is $5k\Omega$, calculate the values of R_{B1} and R_{B2} .
- e) Define feedback. State and explain its types.
- t) Using 2's complement method subtract (01101)₂ from (11011)₂

* * * * *