BACHELOR OF SCIENCE (CBCS-2018 COURSE) F. Y. B. Sc. Sem-II :SUMMER- 2022

SUBJECT: PHYSICS: ELECTRICITY & MAGNETISM

Day: Wednesday Date: 6/7/2022

S-18320-2022

Time: 11:00 AM-02:00 PM

Max. Marks: 60

N.B.

1) All questions are **COMPULSORY**.

- 2) Figures to the **RIGHT** indicate **FULL** marks.
- 3) Draw diagrams WHEREVER necessary.
- **Q 1.** Attempt any **Two** of the following.

(12)

- State principle of superposition in electrostatics and obtain an expression for force on any one charge due to all other charges.
- (b) Explain polar and non-polar molecules with examples and effect of electric field on them.
- (c) Using Biot-Savert's law, obtain expression for magnetic field produced in long straight conductor.
- **Q 2.** Attempt any **Two** of the following.

(12)

- Obtain the relation between \bar{B} , \bar{M} and \bar{H} . Discuss qualitatively.
- What is electric dipole and dipole moment? Obtain an expression for electric potential at any point due to an electric dipole.
- State Gauss's law and obtain the expression for the electric intensity near the (c) surface of metallic conductor using Gauss's law.
- **Q 3.** Attempt any **Two** of the following.

(12)

- State and explain Coulomb's law in electrostatics. Discuss its vector form.
- State and prove Ampere's circuital law. (b)
- Calculate the electric intensity and potential due to a point charge 6×10^{-8} C at a (c) point 20 cm away from it.
- **Q 4.** Attempt any **Three** of the following.

(12)

- (a) A charge of 12 nano-coulombs is situated inside a cube. Calculate the electric flux through one of the faces of the cube. (Given: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$).
- (b) Using Gauss's law, obtain an expression for electric intensity at any point due to a line charge.
- Obtain an expression for Torque on a dipole placed in an uniform electric field.
- (d) Obtain an expression of magnetic field on the axis of solenoid.
- **Q 5.** Attempt any **Four** of the following.

(12)

- Define (i) magnetization, (ii) magnetic intensity, (iii) Magnetic induction.
- Define magnetic field and hence explain its properties. (b)
- An electric dipole consisting of two opposite charges each of magnitude 4 μC is (c) separated by a distance of 2 cm. The dipole is placed in an external field of intensity 2×10^5 N/C. Calculate torque on the dipole.
- Explain Paramagnetic, Diamagnetic and Ferromagnetic materials with example. (d)
- What do you mean by Polarization of dielectric material? (e)
- Give the limitations of Coulomb's law and Gauss's law. (f)