BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2016 COURSE) S.Y.B.Sc.(Computer Science) Sem-IV :SUMMER- 2022 SUBJECT : OPTIMIZATION TECHNIQUES

Day: Friday
Date: 8/7/2022

S-14895-2022

Time: 03:00 PM-06:00 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- Q.1 Attempt ANY TWO of the following:

(12)

- a) Explain the terms:
 - i) Objective function
 - ii) Linearity constraints
 - iii) Feasible solution.
- **b)** Solve the following L.P.P. graphically:

Maximize
$$Z = x + 3y$$

Subject to
$$3x + 6y \ge 8$$

$$5x+2y \ge 10$$

$$x \ge 0, y \ge 0$$

c) Solve the following L.P.P by simplex method:

Minimize
$$z = x_1 - 3x_2 + 2x_3$$

$$3x_1 - x_2 + 2x_3 \le 7$$

$$-2x_1 + 4x_2 \le 12$$

$$4x_1 + 3x_2 + 8x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

Q.2 Attempt ANY TWO of the following:

(12)

- a) Describe the steps for finding the initial solution by Vogel's approximation method.
- **b)** Fined initial Feasible solution of the following transportation problem by North West corner method.

	W_1	W_2	W ₃	W_4	Supply
Fı	6	5	8	5	30
\mathcal{F}_2	5	11	9	7	40
F ₃	8	9	7	13	50
Demand	35	28	32	25	

c) Solve the following assignment problem for minimum cost:

	I	II	III	IV	V
A	11	17	8	16	20
В	9	7	12	6	15
C	13	16	15	12	16
D	21	24	17	28	26
Е	14	10	12	11	15

Q.3 Attempt **ANY TWO** of the following:

(12)

- What is an unbalanced assignment problem? How to make problem balanced?
- **b)** Solve the following game by graphical method:

	Player B			
		B_1	B_2	
Player A	A_1	-7	6	
	A_2	7	-4	
	A ₃ -4 .			
	$\overline{A_4}$	8	-4	

c) Reduce the following game by the dominance principle and find value of the

14 10 11 18 12 game: 13 14 14 13

Q.4 Attempt ANY THREE of the following:

(12)

a) Solve the following assignment problem for minimum cost, where '-' represent no assignment of job to that respective machine.

	Machine				
		A	В	C	D
Jobs	I	4	7	5	6
3003	II	-	8	7	4
	III	3	-	5	3
	IV	6	6	4	2

b) Find the dual of the following L.P.P.

Minimize $Z = 2x_1 + 2x_2$

 $2x_1 + 4x_2 \ge 1$ Subject to

 $x_1 + 2x_2 \ge 1$

 $2x_1 + x_2 \ge 1$

 $x_1, x_2 \ge 0$

Solve the following game by algebraic method:

		Play	ger C
		A	В
Player A	I	20	-6
	II	-4	3

d) Solve the following assignment problem:

	C_1	C ₂	C ₃
A_1	1	4	5
A_2	2	3	3
A ₃	3	1	2

Attempt ANY FOUR of the following: Q.5

(12)

- a) Define:
- i)Value of the game ii) Saddle point
- b) Obtain the standard form of the following L.P.P.

Maximize
$$Z = 2x + 3y$$

subject to
$$2x + 3y \ge 5$$

$$2x + 4y \ge 7$$

$$x, y \ge 0$$

c) Determine whether following assignment problem is balanced? If not balanced

			Jobs		
		I	II	III	IV
Operator	A	3	2	1	5
	В	3	1	7	8
	C	7	6	4	10

- d) Write the advantages of the dual of L.P.P.
- e) Determine the saddle point of the following game:

	Bı	B_2	B ₃
A_1	1	3	1
A_2	0	-4	-3
A_3	1	5	-1

Define loop in transportation problem. Give some properties of it.