BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE) B.Tech.Sem - IV IT :SUMMER- 2022 SUBJECT : FORMAL LANGUAGES & COMPUTATION THEORY

Day: Thursday
Date: 16-06-2022

S-24719-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is allowed.
- 4) Assume suitable data if necessary.
- Q.1 Define Moore and Mealy Machine. Convert following Mealy machine to (10) Moore Machine.

Present State	Input = 0		Input = 1	
	State	o/p	State	o/p
qı	qı	1	q_2	0
q 2	q 4	1	q 4	1
q 3	q_2	1	q ₃	1
q ₄	q ₃	0	qı	1

OR

Q.1 Change the given Moore Machine into Mealy Machine.

(10)

Present State	0_	1	o/p
р	S	p	0
q	q	r	_1
r	r	S	0
S	S	р	0

Q.2 Give applications of pumping lemma. Prove that $L = \{a^{n2} \mid n \ge 1\}$ is regular (10) or non-regular.

ΩR

- Q.2 Define regular expression. Convert following regular expression to NFA with (10) ε moves $((0+1)^*1^+)+0^*$.
- Q.3 Simplify following grammar using grammar simplification rules. S \rightarrow 0A0 | 1B1 |BB, A \rightarrow C, B \rightarrow S | A, C \rightarrow S ϵ
- Q.3 Give rules for Chomsky normal form and Greibach normal form. Explain both (10) forms with suitable examples.
- Q.4 What is CFG? For the grammar given draw parse tree for leftmost and (10) rightmost derivation of string 1001.

 $S \rightarrow A \mid B$

 $A \rightarrow 0A \mid \epsilon$

 $B\rightarrow 0B \mid 1B \mid \epsilon$

OR

- Q.4 Convert the grammar in GNF for given CFG: $E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow (E) \mid a.$ (10)
- Q.5 Design a TM to find the 1's complement of a binary input. (10)

OR

- Q.5 Design a TM for recognition of binary string of Type $0^n 1^n$. (10)
- Q.6 How time and space complexity is measured explain with example? . (10)

OR

Q.6 When the problem is said to be un-decidable? Briefly explain halting problem. (10)