BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE) B.Tech.Sem - IV E & TC :SUMMER- 2022 SUBJECT : INTEGRATED CIRCUITS & APPLICATIONS

y: T ite: 1		day Time: 10:00 AM -2022 S-24661-2022 Max. Marks: 60	
I.B.	1) 2) 3) 4)	All questions are COMPULSORY . Figures to the right indicate FULL marks. Use of non-programmable calculator is allowed. Assume suitable data wherever necessary.	
Q.1		Define the following terms with reference to operational amplifier:	(10)
		 i) Input Bias Current ii) Input Offset Current iii) Differential Input Resistance iv) CMRR v) PSRR OR 	
Q.1		Why do we need frequency compensation for OPAMP? State the three techniques of frequency compensation.	(10)
Q.2		Design an inverting DC amplifier using OPAMP with following specifications: $V_i = 5 \text{m V}$, $A_v = 100$, Source resistance $R_s = 50 \Omega$, Assume $R_L = 10 \text{ K}\Omega$ and	(10)
		IB(max) for OPAMP = 500_n A.	
Q.2		OR Derive the equations for output of an non-inverting summing amplifier assuming three input sources.	(10)
Q.3		Draw the circuit diagram for logarithmic amplifier and derive the equation for its output voltage.	(10)
Q.3		OR Design a second order HPF with Butter worth response with $f_L = 10$ kHz using 741 OPAMP. Compute the required slew rate for the OPAMP if input voltage (peak) = 1V	(10)
Q.4		Design an inverting Schmitt Trigger circuit to have LTP = $-1V$ and UTP = $+1V$, to produce a $\pm 11V$ output. Assume $I_b(max) = 500nA$ for OPAMP. Clearly state the required supply voltage value for the OPAMP. OR	(10)
Q.4		Draw the circuit diagram for sample and hold circuit and explain its operation.	(10)
Q.5		Design a IC555 based a stable multivibrator to give a 5kHz output signal with 50% duty cycle. Use VCC = + 18 V, given : I_{th} = 0.25 μA and I_{trig} = 0.5 μA . OR	(10)
Q.5		Design a phase-shift oscillator using 741 OPAMP, to produce a 3kHz frequency . The OPAMP is to use a \pm 12 V supply.	(10)
Q.6		Draw the block diagram of a PLL and explain its operation. State its applications.	(10)
		OR	
Q.6		Define the following terms with reference to ADC: i) Precision ii) Offset and gain errors iii) Integral non linearity iv) Stability v) Conversion time	

* * :