BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE)

B.Tech.Sem - III IT:: SUMMER - 2022

SUBJECT: DISCRETE STRUCTURES & GRAPH THEORY

Day: Monday Date: 30-05-2022

S-24706-2022

Time: 02:30 PM-05:30 PM

Max. Marks: 60

N.B.:

- All questions are **COMPULSORY**. 1)
- Figures to the right indicate FULL marks. 2)
- Draw neat and labeled diagram WHEREVER necessary. 3)
- 4) Assume suitable data if necessary.

Q.1 a) Show that
$$p \to (q \to r)$$
 and $p \to (\sim q \lor r)$ is logically equivalent. [05]

b) Without constructing truth table show that
$$(p \land (p \rightarrow q)) \rightarrow q$$
. [05]

OR

Q.1 Let
$$A = \{0, 2, 4, 6, 8, 10\}$$
 [10] $B = \{0, 1, 2, 3, 4, 5, 6\}$ $C = \{4, 5, 6, 7, 8, 9, 10\}$ find:

- $A \cap B \cap C$
- iii) $(A \cup B) \cap C$ v) $A \cup (B \cup C)$

- $A \cup B \cup C$ ii)
- $(A \cap B) \cup C$

Q.2 Let
$$A = \{1, 2, 3, 4\}$$
 and $R = \{(1, 1), (1, 2), (2, 2), (2, 4), (1, 3), (3, 3), (3, 4), (1, 4)\}$ show that R is a partial order and draw Hasse diagram. Determine chains and anti-chains.

OR

Q.2 Given
$$S = \{1, 2, 3, 4, 5\}$$
 and relation R on S, where $R = \{(x \ y) \mid x + y = 5\}$ [10] what are the properties of R. Check whether relation is partial order or equivalence. Justify your answer.

Q.3
$$a_r = \begin{cases} 0 & 0 \le r \le 2 \\ 5^r & r \ge 3 \end{cases}$$
 $b_r = \begin{cases} 3+r & 0 \le r \le 1 \\ 2^r & r \ge 2 \end{cases}$ [10]

Find C_r where $C_r = a_r + b_r$ and $d_r = a_r$. b_r

- Explain following terms 'Transitive Closure'. Prove that if a relation R on a [10] 0.3 set A is transitive and irreflexive then it is asymmetric.
- Find shortest path between a to z for following graph using Dijkstra's [10] **Q.4** algorithm.

- Q.4 Show that a complete graph k_n ($n \ge 3$) has Hamiltonian circuit. What is the [10] length of circuit? How many Hamiltonian circuit exists in k_n ?
- Q.5 Construct a binary tree from given in order and preorder traversal: [10]

Inorder: AEBDCFGKIHJL Preorder: FEADBCGHIJKL

OR

Q.5 Find minimum spanning tree and weight of it for the given graph using Prim's [10] algorithm.

Q.6 What is homomorphism in an algebraic system? What is monoid? Explain by [10] giving example.

 \mathbf{OR}

Q.6 Explain following term with suitable example:

i) Ring

ii) Integral Domain

iii) Field

* * * *