BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE) B.Tech.Sem - IV E&C :SUMMER- 2022 SUBJECT : FM WAVES & PROPAGATION

SUBJECT: EM WAVES & PROPAGATION Time: 10:00 AM-01:00 PM Day: Monday S-24603-2022 Max. Marks: 60 Date: 20-06-2022 N.B. All questions are **COMPULSORY**. 1) 2) Figures to the right indicate **FULL** marks. 3) Use on non – programmable **CALCULATOR** is allowed. Assume suitable data and standard notations **WHEREVER** applicable. 4) Bold letters are VECTORS. 5) **Q.1** Apply Gauss's law and the conservative nature of E to derive the necessary (10) boundary conditions for dielectric-dielectric medium under the influence of different *E* fields. OR An electric dipole of 100 a_z pC.m is located at the origin. Find electric potential, V and E at points (a) (0, 0, 10)(05)**(b)** $(1, \pi/3, \pi/2)$ (05)Q.2Discuss the forces due to magnetic fields (a) Due to moving charged particles in a B field (05)(b) On a current element in an external **B** field. State Fleming's right-hand thumb (05)rule. OR (a) Determine the magnetic moment m And hence Torque, T considering a (05) uniform magnetic field, B. (b) Classify magnetic materials based on magnetic susceptibility (χ_m) and relative (05) permeability (μ_r) . Q.3 (a) Differentiate between conduction and displacement current (05)(b) State's all four Maxwell's equation in a time-varying field in integral as well (05) as differential form with necessary remarks. OR

Derive induced emf due to

(b) Moving loop in static **B** field.

(a) A stationary loop in time-varying **B** field.

(05)

(05)

Q.4	(a)	A lossy dielectric has an intrinsic impedance of $200 \angle 30^0 \Omega$ at a particular	(10)
		radian frequency w. If, at that frequency, the plane wave propagating through	
		the dielectric has the magnetic field component	
		$H = 10.e^{-\alpha x} \cos \left(wt - \frac{1}{2}x\right) a_y A/m.$	
		Determine E and attenuation constant, α .	
		OR	
		Using the relations of propagation constant, γ ; attenuation constant, α ; phase	
		constant, β ; intrinsic impedance, η ; and wave velocity, u ; in lossy dielectrics	
		find the same parameters in	
	(a)	Plane waves in lossless dielectrics	(03)
	(b)	Plane waves in Free space	(03)
	(c)	Plane waves in good conductors. Also, find skin depth.	(04)
Q.5		An antenna with an impedance of 40+j30 Ω is to be matched to a 100 Ω	
		lossless line with a shorted stub. Determine	
	(a)	The required stub admittance	(04)
	(b)	The distance between the stub and the antenna	(03)
	(c)	The stub length	(03)
		OR	
		A distortionless line has Z_0 =60 Ω , α =20 mNp/m, u =0.6c, where c is the speed	(10)
		of light in a vacuum. Determine R, L, G, C, and λ at 100 MHz.	
Q.6		Derive and discuss the cut-off, Evanescent and propagation cases in TM mode	(10)
		of a rectangular waveguide using general relations of wave number, k and	
		propagation constant, γ . Mention the dominant mode.	
		OR	
		Describe briefly the necessary characteristics of an antenna.	
	(a)	Frequency/Wavelength	(02)
	(b)	Polarization	(04)
	(c)	Antenna losses	(02)
	(d)	Gain	(02)
		* * *	

The Complete Smith Chart

Black Magic Design

