BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE)

B.Tech.Sem - III E&C:: SUMMER - 2022

SUBJECT: SIGNALS & SYSTEMS

Day: Thursday Date: 2/6/2022

S-24595-2022

Time: 02:30 PM-05:30 PM

Max. Marks: 60

N.B.:

1) All questions are **COMPULSORY**.

2) Figures to the right indicate FULL marks.

3) Use of non-programmable **CALCULATOR** is allowed.

4) Assume suitable data if necessary.

Q.1 a) Sketch the following signals;

i) u(n+2)-u(n-3)

ii) $u(-n+2) \cdot u(n)$

[04]

b) Write the classification of signals according to their characteristics.

[06]

OR

Q.1 Draw the elementary continuous time signals and state its functions.

[10]

[06]

Q.2 a) Check whether the following systems are linear or not.

 $i) \quad y(t) = e^{x(t)}$

ii) $y(t) = x^2(t)$

iii) $y(t) = t^2 x(t)$

b) State and prove any two properties of convolution.

[04]

OR

Q.2 a) Determine the convolution sum of two sequences

 $x(n) = \{1, 4, 3, 2\};$

 $h(n) = \{1, 3, 2, 1\}$

[06]

b) Determine whether system is time-variant or time invariant.

 $i) \quad y(t) = t \ x \ (t)$

ii) $y(t) = x(t) \cos(50\pi t)$

Q.3 Find the trigonometric series for the periodic signal x(t) shown in figure.

[10]

[04]

Q.3 State and prove any four properties of continuous time Fourier series.

[10]

Q.4 Determine Laplace transform of the following:

[10]

i) $x(t) = \sin \Omega \circ tu(t)$

ii) $x(t) = e^{-at} \cos \Omega \circ t \ u(t)$

OR

P.T.O.

Q.4 a) Determine the inverse Laplace transform of
$$X(s) = \frac{2}{s(s+1)(s+2)^2}$$
. [06]

b) Find inverse Laplace transform using convolution theorem. [04]
$$X(s) = \frac{4}{s^2(s^2 + 16)}$$

Q.5 a) Determine the z transform and their ROC of the following discrete time [06] signals:

i)
$$x(n) = \{3, 2, 5, 7\}$$
 ii) $x(n) = \{6, 4, 5, 3\}$

b) State and prove properties of z transform using convolution theorem $Z\{x_1(n)*x_2(n)\} = X_1(z) X_2(z)$

OR

Q.5 Determine the inverse z transform of the following: [10]

i)
$$X(z) = \frac{3z^2 + 2z + 1}{z^2 + 3z + 2}$$
 ii) $X(z) = \frac{z - 0.4}{z^2 + z + 2}$

Q.6 a) What is aliasing? How it can be eliminated? [06]

b) State and explain sampling theorem and Nyquist criteria. [04]

OR

Q.6 a) Find cross-correlation of two finite length sequences
$$x(n) = \{1, 2, 1, 1\}; y(n) = \{1, 1, 2, 1\}$$

b) State the equations for correlation of power and periodic signals. [04]