BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE)

B.Tech.Sem - III ELECTRICAL : : SUMMER - 2022 SUBJECT : COMPUTATIONAL ALGORITHMS

Day: Thursday Date: 2/6/2022

S-24543-2022

Time: 02:30 PM-05:30 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- 4) Draw neat and labeled diagram WHEREVER necessary.
- 5) Assume suitable data if necessary.
- Q.1 a) Perform operation on following numbers using floating point algebra: [05]
 - 3.1897 E10 + 1.18631 E12
 - ii) $3.1897 E10 \times 0.2383 E10$
 - iii) $5.2869 E5 \div 0.2386 E2$
 - **b)** Explain various operators in MATLAB with suitable examples.

[05]

OR

- Q.1 a) What are different types of errors? Explain generalized error formula.
- [05]
- b) Write short notes on the following in MATLAB context:

[05]

- i) Data types
- ii) Control statements
- Q.2 a) Solve the following equation by using Bisection method. Consider appropriate [05] interval. $f(x) = x^3 29 = 0$. Solve only 5 iterations.
 - b) Fit a second degree parabola to the following data for the equation $y = ax^2 + bx + c$.

[05]

X	0	1	2	
У	6	9	13	

OR

- Q.2 a) Use Newton-Raphson method to obtain root up to 4 decimal places for the [05] function: $\sin(x) = 1 x$.
 - b) Use Secant method to find root of $f(x) = x \log_{10}(x) 1.9 = 0$ at the end of 3rd [05] iteration.
- **Q.3** a) If f(50) = 39.1961, f(51) = 39.7981, f(52) = 40.3942, f(53) = 40.9843, **[05]** f(54) = 41.5687, then obtain f(53.5) using Newton's backward interpolation method.
 - b) Use Lagrange's interpolation formula to find value of y when x = 1.5 for given [05] data:

X	1	3	6	8	
У	2.3	4.9	7.3	9.8	

OR

Q.3 a) Compute f(1.5) for following data using Newton's divided difference method. [05]

x	0	1	2	5	
f(x)	2	3	12	147	

b) The current flowing through the inductance as a function of time is given [05] below. Determine the voltage drop in an inductance of 4H at t = 0.3.

time, t	0	0.1	0.2	0.3	0.5	0.7
current, i	0	0.15	0.3	0.55	0.8	1.9

- **Q.4** a) Solve the equation: $\frac{dy}{dx} = \frac{1}{x y}$, y(0) = 1 for y(0.1) and y(0.2) by using [05] Runge-Kutta method of 4th order.
 - **b)** Evaluate $\int_{0}^{\pi} x \cdot \sin(x) dx$ using trapezoidal rule by taking 13 ordinates. [05]

OR

- Q.4 a) Evaluate the integral $\int_{0}^{\pi} (4+2\sin x) dx$ using Simpson's 3/8 rule where n = 5. [05] Compute percentage relative error.
 - **b)** Use modified Euler's method to solve $\frac{dy}{dx} = x^2 + y$ with condition y(0) = 1. **[05]** Find the value of y at x = 0.1.
- Q.5 a) Use Gauss Elimination method to solve the following equations. Use Partial [05] pivoting.

$$x_1 + 20x_2 + x_3 = 22$$

$$-x_1 - x_2 + 20x_3 = 18$$

$$20x_1 + x_2 - x_3 = 20$$

b) Solve the following equations by using Gauss-Seidel method current up to [05] three significant digits.

$$x_1 + 10x_2 - 4x_3 = 6$$
$$2x_1 - 4x_2 + 10x_3 = -15$$
$$9x_1 + 2x_2 + 4x_3 = 20$$

OR

[05]

[05]

Q.5 a) Use Gauss Jordan method to compute inverse of matrix:

$$A = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix}$$

b) Using Jacobi's iteration method solve the following system of equations. [05]

$$2x_1 + 12x_2 + x_3 - 4x_4 = 13$$

$$13x_1 + 2x_2 - 3x_3 + x_4 = 18$$

$$2x_1 + x_2 - 3x_3 + 9x_4 = 31$$

$$3x_1 - 4x_2 + 10x_3 + x_4 = 29$$

- Q.6 a) What do you mean by Hypothesis testing? Explain its importance for [05] computational algorithms.
 - b) Explain Monte Carlo method for Statistical Analysis.

OR

Q.6 a) Explain the role of Battery management system for computational analysis. [05]

b) Explain the role of condition monitoring for computational analysis. [05]