BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE) B.Tech.Sem - III CHEMICAL : : SUMMER - 2022

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-I

Day : Monday Date : 30-05-2022

S-24432-2022

Time: 02:30 PM-05:30 PM

Max. Marks: 60

N. B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Use non programmable **CALCULATOR** is allowed.
- 4) Assume suitable data if necessary.
- 5) Use of steam and Psychrometric chart is allowed.
- Q.1 Elaborate the following terms:

(10)

- i) Thermodynamic system
- ii) Thermodynamic process
- iii) Thermodynamic equilibrium
- iv) Thermodynamic property

OR

A mass of gas is compressed in a mechanically reversible process from 80 kPa, 0.1 m^3 to 0.4 MPa, 0.03 m^3 . Assuming that the pressure and volume are related by $PV^n = \text{constant}$, find the work done by the gas system.

Q.2 Derive following expression with usual notations for steady state flow process. (10)

$$\Delta H + \frac{\Delta u^2}{2} + g\Delta z = Q + W_s$$

OR

1.5 kg of liquid having a constant specific heat of 2.5 kJ/kg K is stirred in a well-insulated chamber causing the temperature to rise by 15° C. Find ΔE and W for the process.

The same liquid as above is stirred in a conducting chamber. During the process 1.7 kJ of heat is transferred from the liquid to the surroundings, while the temperature of the liquid is rising to 15° C. Find ΔE and W for the process.

Q.3 State Carnot's principle about the heat engine and derive Carnot's equations. (10)

OR

Two kg of water 80° C are mixed adiabatically with 3 kg of water at 30° C in a constant pressure process of 1 atmosphere. Find the increase in the entropy of the total mass of water due to the mixing process (Cp of water = 4.187 kJ/kg K)

Q.4 One kg of air in a closed system, initially at 5° C and occupying 0.3 m³ volume, undergoes a constant pressure heating process to 100° C. There is no work other than Pdv work. Find i) the work done during the process, ii) the heat transferred, and iii) the entropy change of the gas.

OR

- a) What do you mean by equation of state? Give the equations of state for real (05) gases.
- b) Define compressibility factor and give its significance. (05)
- Q.5 Derive the four Maxwell relationships for homogeneous phase from first law (10) of thermodynamics.

OR

Define fugacity and fugacity coefficient. Elaborate methods to determine (10) fugacity of pure species.

Q.6 Describe vapour compression cycle for refrigeration and show it on a T.S. (10) diagram.

OR

Enumerate Rankine cycle for power generation with T-S diagram and neat (10) sketch.

* * * *