BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE) B.Tech.Sem - IV CIVIL :SUMMER- 2022 SUBJECT : VECTOR CALCULUS & DIFFERENTIAL EQUATIONS

Day: Tuesday
Date: 14-06-2022

S-24371-2022

Time: 10:00 AM-01:00 PM

[10]

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Draw neat and labeled diagram wherever necessary.
- 4) Assume suitable data if necessary.

Q.1 Solve by method of variation of parameters $(D^2 - 6D + 9) y = e^{3x} / x^2.$

OR

Q.1 Solve:
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$$
.. [10]

Q.2 A body weight 9.8 is suspended from a spring having constant 4 N/m. Prove that the motion is one of resonance if a force 16 sin2t is applied and damping force is negligible. Assume that initial the weight is at rest in the equilibrium position.

OR

- Q.2 A horizontal tie-rod is freely pinned at each end. It carries a uniform load w *lb* per unit length and has a horizontal pull P. Find the central deflection and the maximum bending moment, taking the origin at one of its ends.
- Q.3 A tightly stretched string with fixed and points x = 0 and x = l is initially in a position given by $y(x,0) = y_0 \sin^3 \left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement y at any distance x from one end and at any time

OR

Q.3 Solve:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 if *i*. u is finite for all t.

ii. $u = 0$ where $x = 0$, π for all t.

iii. $u = \pi x - x^2$ when $t = 0$ and $0 \le x \le \pi$

Q.4 Find the directional derivative of the function $\phi = e^{2x-y-z}$ at (1, 1, 1) in the [10] direction of the tangent to the curve $x = e^{-t}$, $y = 2\sin t + 1$, z = t—cost, at t = 0.

OR

Q.4 Show that:
a)
$$\nabla \cdot \left(\frac{\overline{a} \times \overline{r}}{r}\right) = 0$$

b)
$$\nabla \times \left(\frac{\overline{a} \times \overline{r}}{r^n}\right) = \frac{(2-n)}{r^n} \overline{a} + \frac{n}{r^{n+2}} (\overline{a} \cdot \overline{r}) \overline{r}$$

P.T.O.

Q.5 Find work done in moving a particle from (0, 1, -1) to $(\frac{\pi}{2}, -1, 2)$ in a force [10] field $\overline{F} = (y^2 \cos x + z^3) \hat{i} + (2y \sin x - 4) \hat{j} + (3xz^2 + 2) \hat{k}$.

Is the field conservative?

OR

- Verify stokes theorem for $\overline{F} = (y-z+2)\hat{i} + (yz+4)\hat{j} xz\hat{k}$ over the [10] surface of cube x = 0, y = 0, z = 0, x = 2, z = 2 above the xoy plane (open at the bottom).
- Q.6 Determine the equation of regression lines for the following data: [10]

X	1	2	3	4	5	6	7	8	9
	9	`8	10	12	11	13	14	16	15

And obtain an estimate of y for x = 4.5.

OR

Q.6 A manufacturer of cotter pins knows that 2% of his product is defective. If he sells cotter pins in boxes of 100 pins and guarantees that no more than 5 pins will be defective in a box, find the approximate probability that a box will fail to meet the guaranteed quality.

* * *