BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE)

B.Tech.Sem - IV COMPUTER : : SUMMER - 2022 SUBJECT : PROBABILITY & STATISTICS

Day: Tuesday
Date: 14-06-2022

S-24233-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.

- 1) All questions are COMPULSORY.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is allowed.
- Q.1 If A can hit target 3 times in 5 shots, If B can hit target 2 times in 5 shots, If C can hit target 3 times in 4 shots. They fire volley. What is the probability that
 - a) Two shots hit
 - b) At least two shots hit.

OR

A committee consists of 9 students two of which are from 1^{st} year, three from 2^{nd} year and four from 3^{rd} year. Three students are to be removed at random. what is the chance that

- a) The three students belongs to different classes.
- b) Two belongs to same class and third from different class.
- c) The three belongs to same class.
- Q.2 X is a continuous random variable with probability density function given by: (10) $f(x) = kx(0 \le x \le 2)$

$$=2k(2 \le x \le 4)$$

$$= -kx + 6k(4 \le x \le 6)$$

Find k and mean value of x.

OR

A variate X has probability distribution

X	-3	6	9	
P(X=x)	1/6	1/2	1/3	

Find E(X) and $E(X^2)$. Hence evaluate $E(2X+1)^2$.

In a certain factory turning out razor blades, there is a small chance of $\frac{1}{500}$ for any blade to be defective. The blades are supplied in a packets of 10. Use poisson distribution to calculate the approximate number of packets containing no defective and two defective blades in a consignment of 10,000 packets.

OR

The mean weight of 500 students is 63 kgs, and standard deviation is 8 kgs. Assuming that the weights are normally distributed, find how many students weight 52 kgs? The weights are recorded to nearest kgs. $A_1[(z_1 = 1.44) = 0.4251]$ $A_2[(z_2 = 1.31) = 0.4049]$

Q.4 Given r = 0.9, $\sum xy = 70$, $\sigma_y = 3.5 \sum x^2 = 100$. Find the number of items, (10) if X and Y are deviation from Arithmetic mean.

OR

Calculate the coefficient of correlation for

X	5	9	15	19	24	28	32
у	7	9	14	21	23	29	30
f	6	9	13	20	16	11	7

Q.5 Obtain regression lines for the following:

(10)

X	2	3	5	7	9	10	12	15
Y	2	5	8	10	12	14	15	16

Find estimate of i) Y when X = 6 ii) X when Y = 20. OR

The two regression equation of the variable x and y are x = 19.13 - 0.87y, y = 11.64 - 0.5x

Find: i) (\bar{x}, \bar{y}) ii) Correlation coefficient between x and y.

Q.6 The simple correlation coefficient between temperature (X_1) , corn yield (X_2) (10) and rainfall (X_3) are $r_{12} = 0.59$, $r_{13} = 0.46$, $r_{23} = 0.77$. Calculate partial correlation coefficient $r_{12.3}$ and multiple correlation coefficient $R_{1.23}$.

OR

Calculate:
$$R_{1.23}$$
 b) $R_{3.12}$ c) $R_{2.13}$ for $\overline{X_1} = 6.8$ $\overline{X_2} = 7.0$ $\overline{X_3} = 74$ $S_1 = 1.0$ $S_2 = 0.8$ $S_3 = 9$ $r_{12} = 0.6$ $r_{13} = 0.7$ $r_{23} = 0.65$

* *