BACHELOR OF TECHNOLOGY (C.B.C.S.) (2021-COURSE) B. Tech. Sem - I E& C:SUMMER- 2022 SUBJECT: LINEAR ALGEBRA, CALCULUS & SOLID GEOMETRY

Day : Monday
Date : 18-07-2022

S-24083-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the **RIGHT** indicate **FULL** marks.
- 3) Use of non-programmable calculator is **allowed**.
- 4) Assume suitable data WHEREVER necessary.

Q.1 Show that the system

(10)

$$3x + 4y + 5z = \alpha$$

$$4x + 5y + 6z = \beta$$

$$5x + 6y + 7z = \gamma$$

is consistent only when α, β, γ are in arithmetic progression.

OR

Q.1 Find the Eigen values and the Eigen vectors of the following matrix

(10)

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$$

Q.2 A balloon is in the form of right circular cylinder of radius 1.5 m and length 4 m and is surrounded by hemispherical ends. If the radius is increased by 0.01 m and the length by 0.05 m. find the % change in the volume of a balloon.

OR

Q.2 If
$$u = \sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$$
 then show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{\tan^3 u - \tan u}{4}$. (10)

Q.3 Examine for minimum and maximum values of $f(x,y) = \sin x + \sin (x+y)$. (10)

)R

Q.3 If u,v,w are the roots of the equation $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$ in λ then (10) find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$.

Q.4 Find Fourier series of $f(x) = \pi^2 - x^2$, $x \in (-\pi, \pi)$. (10)

OR

Q.4 Find
$$\frac{d}{dx}(erf_c(ax))$$
. (10)

Q.5 Find the equation of the sphere through the points (4,-1,2), (0,-2,3), (1,5,-1), (10) (2,0,1).

ΩR

- Q.5 Find the equation of the right circular cone whose vertex is at the origin, whose (10) axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and which has a semi-vertical angle of 30°C.
- Q.6 Evaluate $\iint_R \sqrt{xy(1-x-y)} dxdy$ when R is the area bounded by x=0, y=0 and (10) x+y=1.

Q.6 Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x=z}^{x+z} (x+y+z) dx dy dz$ (10)
