BACHELOR OF TECHNOLOGY (C.B.C.S.) (2021-COURSE) B. Tech. Sem - II E&TC :SUMMER- 2022 SUBJECT : DIFFERENTIAL EQUATIONS & COMPLEX ANALYSIS

Day: Tuesday
Date: 26-07-2022

S-24099-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.

1) All questions are COMPULSORY.

- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is allowed.

Q.1 Solve by method of variation of parameters $(D^2 - 2D + 2) y = e^x \tan x.$ (10)

OR

Solve by method of undetermined coefficients

$$\frac{d^2y}{dx^2} - y = e^x \sin 2x$$

Q.2 Form the partial differential equation from $z = x^2 f(y) + y^2 g(x)$ (10)

OR

Solve :

a)
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cos x$$
 (05)

b)
$$(D^2 - 2DD' - D'^2)z = e^{x+y}$$
 (05)

Q.3 Find all values of $(1+i)^{1/5}$ show that their product is 1+i. (10)

OR

Evaluate $\int_{0}^{2+t} (\overline{z})^2 dz$ along

i) line $y = \frac{x}{2}$

0.5

- ii) the real axis to 2 and then vertically to 2+i.
- Q.4 Find bilinear transformation which maps points $z = -1, \infty, i$ to $w = \infty, i, 1$. (10)

Show that w = iz is rotation of z-plane through an angle $\frac{\pi}{2}$. In the

counter clockwise direction, find and plot images of:

i) 0 < x < 1 ii) x > 2 iii) 2 < x < 3 iv) 1 < x < 2 and 2 < y < 3.

Find Taylor series of: (10)

a) $f(z) = e^z$ about z = a **b)** $f(z) = \log(1+z)$ about z = 0.

OR

Find Laurent's series for the function $f(z) = \frac{e^z}{z(z-1)}$ about z = 1. Find region of convergence.

Q.6 Find power series solution of D.E. $(1-x^2)y'' - 2xy' + 2y = 0.$ (10)

Find Taylor series expansion of

$$f(z) = \frac{1}{(2z+1)^3}$$
 about **i)** $z = 0$ **ii)** $z = 2$.