BACHELOR OF TECHNOLOGY (C.B.C.S.) (2021-COURSE) B. Tech. Sem - II CHEMICAL :SUMMER- 2022 SUBJECT : MATERIAL & ENERGY BALANCE CALCULATIONS

Day: Friday Time: 10:00 AM-01:00 PM Date: 5/8/2022 S-24055-2022 Max. Marks: 60 N.B.: All questions are **COMPULSORY**. Figures to the right indicate FULL marks. 2) Use of non-programmable **CALCULATOR** is allowed. 3) 4) Draw neat and labeled diagram WHEREVER necessary. 5) Assume suitable data if necessary. State and explain Dalton's law. [04] Q.1 a) A solution of caustic soda contains 20% NaOH by weight. The density of [06]solution is 1.196 kg/lit. Find the normality, molarity and molality of the solution. **OR** Q.1 a) Prove that, for ideal gas $P_A = y_A P$, where $y_A =$ mole fraction of component A [04] in gas mixture, P_A = partial pressure of component A, P = total pressure. The analysis of gas sample on mole basis is given below: [06] $CH_4 = 66\%$, $CO_2 = 30\%$ and $NH_3 = 4\%$. Calculate : i) average molecular weight of gas density of gas at a temperature of 303K and 303.975 kPa ii) iii) composition in weight percent. Q.2 a) Explain general procedure to solve problems in material balance without [04] chemical reaction. 10,000 kg/hr of solution containing 20% methanol is continuously fed to a b) distillation column. The distillate contains 98% methanol and waste solution (bottom product) from the column carries 1% methanol. All percentages are by weight. Calculate: i) the mass flow rates of distillate and bottom product ii) the percent loss of methanol. OR Explain solid-liquid extraction (leaching) operation used in chemical industry Q.2 a) [04] with its block diagram and material balance. An evaporator is fed with 15,000 kg/hr of a solution containing 10% NaCl, b) [06] 15% NaOH and rest water. In this operation, water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% NaOH, 2% NaCl and rest water. Calculate: i) kg/hr of water evaporated iii) kg/hr of thick liquor obtained. ii) kg/hr of NaCl preciptated A feed containing 60 mole% A, 30 mole% B and 10 mole% inerts enters into Q.3 a) a reactor. 80% of original A reacts according to the reaction $2A + B \rightarrow C$. Find the composition of product stream on mole basis. b) Explain limiting reactant and excess reactant with suitable example. [06]OR A mixture of pure carbon dioxide and hydrogen is passed over a nickel catalyst. Q.3 The temperature of catalyst is 588K and the reactor pressure is 2.02 MPa.g. The gases leaving the reactor contain 57.1% CO₂, 41.1% H₂, 1.68% CH₄ and 0.12% CO by mole on a dry basis. The reaction taking place in the reactor are: $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ $CO_2 + H_2 \rightarrow CO + H_2O$ Find: i) The conversion of CO₂ per pass. ii) The yield of CH₄ in terms of CO₂ reacted. iii) The composition of feed on mole basis. Q.4 a) Explain in detail recycle and purge operation used in chemical industry with [04] their industrial importance and block diagram. **b)** Explain in detail humid heat and humid volume. [06]

Q.4 In a drying operation, it is necessary to maintain moisture content of feed to a calciner at 15% by weight to prevent lumping and sticking. This is achieved by mixing the feed having 30% by weight moisture and with a recycle stream of dried material having 3% moisture by weight. The drying operation is shown in figure 1 given below:

Calculate: i) The fraction of dried product to be recycle.

- ii) Water removed from Calciner.
- iii) Product obtained.

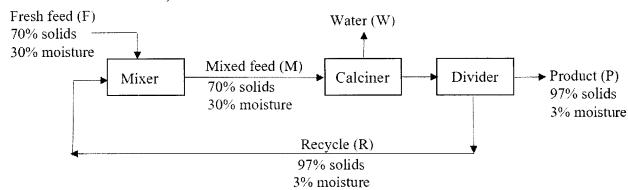


Figure 1: Drying of solids.

Q.5 a) Calculate the standard heat of reaction at 298K of the following reaction: [04] $C_5H_{12}(l) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(l)$ Data:

Component	$\Delta H_{\rm f}^0$ kJ/mol at 298 K
$C_5H_{12}(l)$	- 173.49
CO ₂ (g)	- 393.51
$H_2O(l)$	- 285.83

b) What is heat capacity? Derive relation between Cp and Cv for the ideal gas. [06]

OR

Q.5 A natural gas has the following composition on mole basis: [10] $CH_4 = 84\%$, $C_2H_6 = 13\%$ and $N_2 = 3\%$. Calculate the heat to be added to heat 10 kmol of natural gas mixture from 298K to 523K using C_p^0 data given below:

$$C_p^0 = a + bT + cT^2 + dT^3 \text{ kJ/(kmol.K)}$$

Gas	a	$b \times 10^3$	c × 10 ⁶	$d \times 10^9$
CH ₄	19.2494	52.1135	11.973	- 11.3173
C_2H_6	5.4129	178.0872	- 67.3749	8.7147
N ₂	29.5909	- 5.141	13.1829	- 4.968

Q.6 a) Explain in detail gross and net calorific values of fuel. [04]

Calculate net calorific value at 298K for a sample of fuel oil having C/H ratio
 9.33 (by weight) and containing sulphur to the extent of 1.3% by weight.
 Data: GCV of fuel oil at 298K = 41785 kJ/kg

Latent heat of water vapour at 298K = 2442.5 kJ/kg

OR

Calculate the gross and net calorific values at 298 K in kJ/mole, kJ/kg and kJ/m³ of the gas using following composition by mole: $CH_4 = 74.4\%$, $C_2H_6 = 8.4\%$, $C_3H_8 = 7.4\%$, $i-C_4H_{10} = 1.7\%$, $n-C_4H_{10} = 2.0\%$, $i-C_5H_{12} = 0.5\%$, $n-C_5H_{12} = 0.4\%$, $N_2 = 4.3\%$ and $CO_2 = 0.9\%$. Take specific volume of gas at 298K and 101.325 kPa = 24.465 m³/kmol. Data:

Component	GCV, kJ/mol	NCV, kJ/mol
CH ₄	890.65	802.62
C_2H_6	1560.69	1428.64
C_3H_8	2219.17	2043.11
i-C ₄ H ₁₀	2868.20	2648.12
n-C ₄ H ₁₀	2877.40	2657.32
i-C ₅ H ₁₂	3528.83	3264.73
n-C ₅ H ₁₂	3535.77	3271.67

* * * *