BACHELOR OF TECHNOLOGY (C.B.C.S.) (2021-COURSE). B. Tech. Sem - I COMPUTER, :SUMMER- 2022 SUBJECT: MATHEMATICS FOR COMPUTING-I

Day : Monday
Date : 18-07-2022

S-24005-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Draw neat labelled diagrams **WHEREVER** necessary.
- 4) Use of non- programmable **CALCULATOR** is allowed.

Q.1

Reduce the Matrix
$$A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$
 (10)

to an echelon form and further reduce A to its row canonical form.

OR

Q.1 Find LU factorization of
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ -3 & -10 & 2 \end{bmatrix}$$
 (10)

Q.2 Find a subset of u_1, u_2, u_3 that gives a basis for (10) $w = \text{span}(u_i)$ of R^5 , where $u_1 = (1, -2, 1, 3, -1), \quad u_2 = (-2, 4, -2, -6, 2)$ $u_3 = (1, -3, 1, 2, 1), \quad u_4 = (3, -7, 3, 8, -1)$

OR

Q.2 Find the dimension and basis fo the subspace
$$W$$
 of $P_3(t)$ spanned by $u = t^3 + 2t^2 - 3t + 4$, $v = 2t^3 + 5t^2 - 4t + 7$, $w = t^3 + 4t^2 + t + 2$.

Q.3 Let
$$F: \mathbb{R}^4 \to \mathbb{R}^3$$
 be linear map defined by $F(x, y, z, t) = (x + 2y + 3z + 2t, 2x + 4y + 7z + 5t, x + 2y + 6z + 5t)$ Find a basis and dimension of image of F and Kernel of F.

OR

Q.3 Determine whether or not linear map F is non-singular. If not, find a nonzero vector V whose image is 0; otherwise find a formula for the inverse map. $F: R^3 \to R^3 \text{ defined by } F(x, y, z) = (x + y + z, 2x + 3y + 5z, x + 3y + 7z)$

P. T. O.

Q.4 Let G be the linear operator on R^3 defined by G(x,y,z) = (2y+z,x-4y,3x). (10) Find the matrix representation of G relative to the basis $S = \{w_1, w_2, w_3\} = \{(1,1,1), (1,1,0), (1,0,0)\}$. Verify that [G][v] = [G(v)] for any vector v in R^3 .

OR

- Consider the following bases of R^2 (10) $E = \{e_1, e_2\} = \{(1,0), (0,1)\}$ and $S = \{u_1, u_2\} = \{(1,3), (1,4)\}$. Find the change of basis matrix P from P form the usual basis E to S. Find the change of basis of matrix Q from S back to E.
- Q.5 Let S consist of the following vectors in R^4 . (10) $u_1 = (1,1,0,-1)$, $u_2 = (1,2,1,3)$, $u_3 = (1,1,-9,2)$, $u_4 = (16,-13,1,3)$. Show that S is coordinates of an arbitrary vector v = (a,b,c,d) in R^4 relative to the basis S.

OR

- Q.5 Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis (10) and then orthonormal basis for the subspace U of R^4 spanned by $v_1 = (1,1,1,1), v_2 = (1,2,4,5), v_3 = (1,-3,-4,-2).$
- Q.6 Find the Eigen values and Eigen vectors of matrix A, Where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ -1 & 1 & 0 \end{bmatrix}$ (10)

OR

Verify Cayley-Hamilton theorem for matrix A and use it to find A⁴ and A⁻¹ (10) $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$