BACHELOR OF TECHNOLOGY (C.B.C.S.) (2021-COURSE) B. Tech. Sem - II CS&E :SUMMER- 2022 SUBJECT : PROBABILITY & STATISTICS

Day: Thursday

Date: 28-07-2022

S-24025-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.:

1) All questions are **COMPULSORY**.

- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- 4) Assume suitable data if necessary.
- **Q.1** Two unbiased dice are thrown. Find the probability that:

[10]

- a) Both the dice show the same number.
- **b)** The first dice show 6.
- c) The total of numbers on the dice is 8.
- d) The total of the numbers on the dice is greater than 8.
- e) The total of the numbers on the dice is 13.

OR

- Q.1 Assume that a factory has two machines. Past records show that machine 1 produces 30% of the items of the output and machine 2 produces 70% of the items. Further 5% of the item produced by machine 1 were defective and only 1% produced by machine 2 were defective. If a defective items is drawn at random. What is the probability that it was produced by machine 1 and machine 2?
- Q.2 A continuous random variables x with p.d.f. $f(x) = 3x^2$, $0 \le x \le 1$

[10]

- a) Check that f(x) is p.d.f.
 - b) Find a and b such that
 - i) $P(X \le a) = P(X > a)$
- ii) P(X > b) = 0.05

OR

Q.2 Suppose that two dimensional continuous random variable (X, Y) has joint [10] p.d.f. given by

$$f(x,y) = \begin{cases} 6x^2y & ; & 0 < x < 1, \ 0 \le y < 1 \\ 0 & ; & \text{elsewhere} \end{cases}$$

- **a)** Verify that $\int_{0}^{1} \int_{0}^{1} f(x, y) dxdy = 1$
- **b)** Find $P\left(0 < X < \frac{3}{4}, \frac{1}{3} < Y < 2\right)$, P(X + Y < 1), P(X > Y).
- Q.3 Fit a Poisson distribution to the following data which gives the number of [10] doddens in a sample of clover seeds.

No. of doddens (x)	0	1	2	3	4	5	6	7	8
Frequencies (f)	56	156	132	92	37	22	04	00	01

OR

Q.3 X is normally distributed and the mean of X is 12 and S.D. is 4.

[10]

- a) Find out the probability of the following:
 - i) $X \ge 20$
- ii) $X \le 20$
- iii) $0 \le X \le 12$
- **b)** Find x^{1} , when $P(X > x^{1}) = 0.24$

Q.4 Calculate the coefficient of correlation between X and Y for the following: [10]

X	1	3	4	5	7	8	10
Y	2	6	8	10	14	16	20

OR

Q.4 Let the random variable X have the marginal density

[10]

$$f_1(x) = 1, -\frac{1}{2} < x < \frac{1}{2}$$

and let the conditional density of Y be

$$f(y/x) = \begin{cases} 1, & x < y < x+1 \\ 1, & -\frac{1}{2} < x < 0 \\ 1, & -x < y < 1-x, & 0 < x < \frac{1}{2} \end{cases}$$

Show that the variables *X* and *Y* are uncorrelated.

Q.5 Obtain the equations of two lines of regression for the following data. Also [10] obtain the estimate of X for Y = 70.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

OR

Q.5 Fit an exponential curve of the form $Y = ab^X$ to the following data:

[10]

X	1	2	3	4	5	6	7	8
Y	1	1.2	1.8	2.5	3.6	4.7	6.6	9.1

Q.6 In a trivariate distribution $\sigma_1 = 2$, $\sigma_2 = \sigma_3 = 3$, $r_{12} = 0.7$, $r_{23} = r_{31} = 0.5$. [10]

Find: **a**) $r_{23.1}$

b) R_{1.23}

c)b_{12.3}, b_{13.2}

d) σ_{1 23}

OR

Q.6 Find the regression equation of X_1 on X_2 and X_3 and find $\sigma_{1.23}$, $\sigma_{2.13}$ given the [10] following data:

T	rait	Mean	S.D.	r 12	r ₂₃	r 31
	X_1	28.02	4.42	0.80		
	X_2	4.91	1.10		-0.56	
	X3	594	85			-0.40