BACHELOR OF TECHNOLOGY (C.B.C.S.) (2021-COURSE)

B. Tech. Sem - I CS& E:SUMMER- 2022

SUBJECT: DIGITAL ELECTRONICS

: Thurs e : 21-0		Time: 10:00 AM-01 22 S-24021-2022 Max. Marks: 60	uu P
N.B.:			
	1)	All questions are COMPUSLORY .	
	2)	Figures to the right indicate FULL marks.	
	3)	Assume suitable data WHEREVER necessary.	
**	4)	Draw neat labeled diagrams WHEREVER necessary.	
Q.1		Perform following operations:	(10)
	a)	Subtract (42–27) using 2's complement method.	
	b)	Subtract (13–9) using 1's complement method.	
	c)	Multiply 101.11×111.01	
	d)	Divide (110110)÷(101)	
	e)	Determine Gray code and Excess-3 code for decimal number 12 OR	
Q.1		Explain why NAND and NOR gates are called universal gates. Realize all logic gates using only NAND gates.	(10)
Q.2		State and explain De-Morgan's theorem Prove that.	(10)
	a)	$A + \overline{A}B = A + B$	
	b)	(A+B)(A+C) = A+BC	
		OR	
Q.2		Simplify following SOP expression using K-map and realize using logic gates. $F(A,B,C,D) = \sum m(1,3,4,5,6,9,13,15) + d(7,11)$	(10)
Q.3		State Rules for BCD addition. Design 4 bit BCD adder using two 4 bit Binary adders.	(10)
		OR	
Q.3		Implement following Boolean function using 8:1 Multiplexer. $F(A, B, C, D) = \sum m(2, 4, 5, 6, 8, 11, 13)$	(10)
Q.4		Distinguish between Synchronous and Asynchronous counters. Design mod 7 counter and draw neat timing diagram. OR	(10)
Q.4		Design 3 bit up-down counter with neat circuit diagram and timing diagram.	(10)
Q.5		Compare Moore and Mealy Models with suitable examples write state table and state equation for clocked D flip flop.	(10)
		OR	
Q.5		Describe basic elements ASM chart. Explain Multiplexer controller method with suitable example.	(10)
Q.6		Describe PLA with neat block diagram Implement following functions using PLA with 3 inputs, 3 product terms and two outputs. $F_1(a,b,c) = \sum m(5,6,7)$	(10)
		$F_2(a,b,c) = \sum m(3,5,7)$	
		OR	
Q.6		Describe different types of PLDs. Design 3 bit Gray to Binary code converter and Implement using PROM.	(10)
		* * * *	