BACHELOR OF TECHNOLOGY (C.B.C.S.) (2021-COURSE) B. Tech. Sem - II COMPUTER :SUMMER- 2022 SUBJECT: NUMERICAL COMPUTATION

Day: Monday

Time: 10:00 AM-01:00 PM

Date: 1/8/2022

S-24013-2022

Max. Marks: 60

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is allowed.
- Q.1 Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position (10) correct to the three decimal places.

OR

Find the positive root of $x^4 - x = 0$ correct to three decimal places, using Newton-Raphson method.

Q.2 Apply factorization method to solve the equation
$$3x + 2y + 7z = 4$$
; $2x + 3y + z = 5$; $3x + 4y + z = 7$ (10)

OR

Solve by Jacobi's iteration method, the equations 20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25

Q.3 The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface

x = height	100	150	200	250	300	350	400
y = distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27

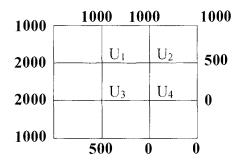
Find the values of y when i) x = 218ft ii) 410 ft using Newtons interpolation formulae.

OR

Apply Bessel's formula to find the value of F(27.5) from the table.

X	25	26	27	28	29	30
f(x)	4.000	3.846	3.704	3.571	3.448	3.333

Q.4 Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using i) Trapezoidal rule ii) Simpson's $1/3^{\text{rd}}$ rule. (10)


OR

Evaluate $\int_{0}^{2} e^{x^{2}} dx$ taking 10 intervals, by using:

- i) Simpson's 3/8th rule ii) Weddles rule
- Using Picard's process of successive approximation, obtain a solution upto the (10) fifth approximation of the equation $\frac{dy}{dx} = y + x$, such that y = 1 when x = 0.

Apply Runge-Kutta fourth order method, to find an approximate values of y when x = 0.2, given that $\frac{dy}{dx} = x + y \& y = 1$ when x = 0.

Q.6 Solve the Laplace equation Uxx + Uyy = 0 for the square mash of figure with boundary values as shown

OR

Solve the equation y'' = x + y with boundary conditions y(0) = y(1) = 0.