BACHELOR OF TECHNOLOGY (C.B.C.S.) (2020 COURSE)

B.Tech.Sem - III R&A : : SUMMER - 2022 SUBJECT : ELECTRONIC CIRCUITS

		SUBJECT: ELECTRONIC (CIRCUITS	
ay : Thuate : 2/6	•	S-24780-2022	Time: 02:30 PM-05:30 PM Max. Marks: 60	
N.B. 1) 2) 3) 4) 5)		All questions are COMPULSORY . Figures to the right indicate FULL marks. Assume suitable data WHEREVER necessary. Draw neat and labelled diagram WHEREVER necessary. Use of non – programmable CALCULATOR is allowed		
Q.	1	Define the concept of D.C. load line. Describe the shifting of operating point near to the cut – off region, near to saturation region and at the center of active region with suitable diagram.		(10)
Q. 1	1 a) b)	OR Describe the operation of voltage divider biasing circuit. Derive the stability factor for voltage divider biasing circuit. Describe the requirements of biasing circuits.		(06) (04)
Q.2	2	Describe the construction and operation of n-channel Depletion type MOSFET with drain characteristics and transfer characteristics in detail. OR		(10)
Q.2	2 a) b)	Explain the operation of JFET amplifier in comode. Differentiate between BJT and JFFT.	ommon Drain configuration	(06) (04)
Q.3	3	What is the need of multistage amplifier? Description multistage amplifier in detail.	cribe operation RC coupled	(10)
Q.3		OR Differentiate between RC coupled, Transformer amplifier. Justify the statement 'Low frequency response of to imperfect by passing of emitter resistance'.		(06) (04)
Q.4	4	Derive the expression for the input resistance, bandwidth of an amplifier with current shunt feed	output resistance, gain and dback.	(10)
Q.4	4 a) b)	OR List the advantages of negative feedback. Deriv with and without feedback in transistor amplifier Explain types of basic amplifiers.	ve the relation between gain	(06) (04)
Q.á	5	A class B push pull power amplifier is supplied swings the collector voltage down to Vmin = 5 V of both transistors is 40W. Calculate the to efficiency.	', The total power dissipation	(10)
Q.á	5 a) b)	OR Describe the operation of class B push – pull am of waveforms. Derive the expression for efficiency of class A p load (Series fed).		(06) (04)
Q.	6	Describe the working of Hartley oscillator with expression for frequency of oscillation and cond OR	n circuit diagram. Derive the ition for starting oscillation.	(10)
Q.	6	A colpitt's oscillator is designed with $C_1 = 100$ inductance is variable. Determine the range of frequency of oscillations is to vary between 950	of inductance values, if the	(10)