MASTER OF TECHNOLOGY (MECHANICAL CAD/CAM) (CBCS - 2015 COURSE)

M. Tech. (Mechanical CAD/CAM) Sem-II :SUMMER- 2022 SUBJECT : CONTROL SYSTEMS

Day: Thursday
Date: 28-07-2022

S-14203-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is allowed.
- 4) Assume suitable data if necessary.

SECTION - I

Q.1 Explain in brief concept of mathematical modelling. Also, obtain the transfer (10) function of simple mechanical system.

OR

- Q.1 Differentiate between the PI and PD control actions with their applications, (10) advantages and limitations.
- Q.2 A system has following transfer function $\frac{C(S)}{R(S)} = \frac{20}{S+10}$. Determine its unit (10) step response with zero initial conditions. Sketch the response trend.

OR

- Q.2 Find the time for 1st undershoot, 2nd overshoot for $G(s) = \frac{15}{(s+1)(s+3)}, H(s) = 1.$ (10)
- Q.3 The open loop transfer function of a unity feedback control system is given by $G(s) = \frac{K}{s(1+sT_1)(1+sT_2)}$ Applying Powth Hyppitz evitorion determine the value of 'K' in terms of T

Applying Routh-Hurwitz criterion, determine the value of 'K' in terms of T_1 and T_2 for the system to be stable.

OR

Q.3 Determine the stability of the system with following characteristic equation using Routh-Hurwitz criterion $5S^6 + 3S^5 + 10S^4 + 9S^3 + 25S^2 + 12S + 100 = 0$.

P.T.O.

SECTION - II

Q.4 Write a short note on: co-relation between time response and frequency (10) response.

OR

- Q.4 Find the frequency response specifications for the following control system (10) with characteristic equation as, $S^2 + 8S + 200 = 0$.
- Q.5 Obtain the state model for the system with transfer function (10) $\frac{Y(S)}{U(S)} = \frac{3S+4}{S^2+5S+6}$

OR

Q.5 A linear time invariant system is characterized by the state variable model. (10) Examine the observability of the system.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}, B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix} C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}.$$

Q.6 What are the major applications of a stepper motor? Describe the construction (10) and working of any one type of stepper motor.

OR

Q.6 Derive transfer function for lead compensator. (10)