BACHELOR OF TECHNOLOGY (C.B.C.S.) (2014 COURSE) B.Tech.Sem - VI CHEMICAL :SUMMER- 2022 SUBJECT : CHEMICAL REACTION ENGINEERING-II

Day : Friday

Date : 17-06-2022

Time : 02:30 PM-05:30 PM

Max. Marks : 60

N.B.

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable calculator is allowed.
- Q.1 a) Differentiate between progressive conversion model and unreacted core (03) model.
 - b) On doubling the particle size from R to 2R, the time for complete conversion triples. What is the contribution of ash diffusion to the overall resistance for particles of size R.

OR

Solids of unchanging size, R = 0.3 mm are reacted with gas in a steady flow (10) bench scale fluidized reactor with the following result,

$$F_0 = 10gm / sec. W = 1000 gm, X_B = 0.75$$

Also, the conversion is strongly temperature sensitive suggesting that the reaction step is rate-controlling. Design a commercial sized fluidized bed reactor (find W) to treat 4 metric tons/hr of solid feed of size R = 0.3 mm to 98% conversion.

Q.2 Derive the rate equation for instantaneous reaction with respect to mass (10) transfer.

OR

The concentration of undesirable impurity in air (at 1 bar = 10^5 Pa) is to be reduced from 0.1% to 0.02% by absorption in pure water. Find the height of tower required for counter current operations.

Data: $k_{Ag}a = 0.32 \, mol \, / \, h \, r.m^3.Pa$

$$k_{AI}a = 0.1 / \text{hr}$$

The solubility of A in water is given by Henry's law constant.

 $H_A = 12.5 \text{ Pa.m}^3/\text{mol.}$

The flow rates per meter squared cross section of tower are

$$F_{o}/A_{cs} = 1 \times 10^{5} \, mol \, / \, hr.m^{2}, \, F_{l}/Acs = 7 \times 10^{5} \, mol \, / \, hr.m^{2}.$$

The molar density of liquid under all conditions if $C_T = 56000 \text{ mol/m}^3$.

Q.3 a) Elaborate in detail Langmuir adsorption isotherm.

(05)

b) Give various methods for preparation of catalyst.

(05)

(

Elaborate with cumene adsorption synthesizing a rate law rate limiting step.

Q.4 What are experimental methods for finding rates? Give rate equation for (10) each method.

P.T.O.

•	`	-	\mathbf{r}
•	ı	н	,

Give design considerations of fixed bed reactor.

(10)

Q.5 Derive the rate equation for diffusion and reaction in spherical catalyst (10) pellet.

OR

- a) Illustrate mass transfer and reaction in packed bed.
- b) Chemical vapor decomposition.
- Q.6 Elaborate on "Role of RTD in determining reactor behaviour." Give (10) examples.

OR

Illustrate relationship between E, F and C curve. Give details of pulse experiment.

* * *