BACHELOR OF TECHNOLOGY (C.B.C.S.) (2014 COURSE) B.Tech.Sem - IV MECHANICAL :SUMMER- 2022 SUBJECT : NUMERICAL METHODS & OPTIMIZATION TECHNIQUES

Day: Friday
Date: 24-06-2022

S-12739-2022

Time: 10:00 AM-01:00 PM

Max. Marks: 60

N. B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Draw neat and labelled diagrams WHEREVER necessary.
- 4) Assume suitable data, if necessary.
- Q. 1 a) Find a positive real root of $x \cos x = 0$ by bisection method between (05) 0 and 1.
 - b) Find the real root of the equation $x = e^{-x}$ using Newton's

(05)

OR

Q. 1 The velocity of a falling parachutist is given by:

(10)

$$v = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$

Where $g = 9.81 \ m/s^2$. For a parachutist with a drag co-efficient $c = 14 \ kg/s$, compute m so that the velocity is $v = 35 \ m/s$ at t = 8s.

Q. 2 Solve the Gauss Elimination method:

(10)

$$2x + 3y - z = 5$$

$$4x + 4y - 3z = 3$$

$$2x - 3y + 2z = 2$$

OR

Q. 2 Solve the following by Gauss Seidel method:

(10)

$$1.2x + 2.1y + 4.2z = 9.9$$

$$5.3x + 6.1y + 4.7z = 21.6$$

$$9.2x + 8.3y + 2z = 15.2$$

Q. 3 Use the method of least squares to fit the curve $y = \frac{c_0}{x} + c_1 \sqrt{x}$ to the (10) following data:

X	0.1	0.2	0.4	0.5	1	2
У	21	11	7	6	5	6

OR

Q. 3 The table below gives value of $\tan x$ for $0.1 \le x \le 0.3$

(10)

X	0.1	0.19	0.20	0.25	0.3
tan x	0.1003	0.1511	0.2027	0.2553	0.3093

Find value of tan 0.12 and tan 0.28 by Newton's interpolation.

Q. 4 Find value gradient of the road at x = 1805 and x = 05 from the elevation (10) data given below:

[Х	0	300	600	900	1200	1500	1800
	У	135	149	157	183	201	205	193

OR

- Q. 4 a) Write the algorithm for Simpson's 1/3rd rule for integration. (05)
 - b) Write the mat lab program for Trapezoidal rule. (05)
- Q. 5 Minimize $f(x) = e^{-x} \cos x \in [0, 1]$ by Golden section search method. (10)

OR

- Q. 5 How do you find the extrema of a function by classical methods? (10)
- Q. 6 What are the optimality criteria for optimization of a multivariable function? (10)

OR

Q. 6 What is a linear programming problem? (10)

* * * *