BACHELOR OF COMPUTER APPLICATIONS (CBCS - 2018 COURSE)

B.C.A. Sem-V: SUMMER - 2022 SUBJECT: GRAPH THEORY

Time: 02:00 PM-05:00 PM Day: Monday Max. Marks: 60

S-18790-2022

N.B.

Date: 30-05-2022

- Q.No. 4 from Section I is **COMPULSORY**. 1)
- Answer **ANY TWO** questions from Q.1,2,3 in Section I. 2)
- Answer **ANY TWO** questions from Q.5,6,7 in Section II. 3)
- All questions carry **EQUAL** marks. 4)
- 5) Answer to both the sections should be written in **SAME** answer book.
- 6) Draw a labeled diagram WHEREVER necessary.

SECTION - I

- Q.1 Answer the following: (6 marks x = 12 marks)
 - a) Suppose that in a group of 5 people A, B, C, D & E the following parts of people are acquainted with each other
 - A & C
 - A & D
 - B & C
 - C & D
 - C & E
 - i) Draw a graph G to represent this situation
 - ii) List the vertex set and the edge set using set notation.
 - b) Perform a Breadth-First-Search (BFS) of the following graph. Where E is the starting node
 - i) Perform counter clockwise ordering from top
 - ii) Use clockwise ordering from top.

- Q.2 Answer the following: (6 marks x 2 = 12 marks)
 - a) Write and discuss 'Konigsberg Bridge Problem'.
 - b) Explain the following graphs (Any Two) with neat diagram
 - i) Connected graph ii) Multi-graphs iii) Dual graphs.
- Q.3 Answer the following: $(6 \text{ marks } \times 2 = 12 \text{ marks})$
 - a) Write and Discuss 'Floyde's Algorithm'.
 - b) What is meant 'Isomorphic graph'. Discuss with suitable example.
- Q.4 Write short notes on ANY THREE of the following: (4 marks x 3 = 12 marks)
 - a) Applications of Trees
 - **b)** Vertex coloring
 - c) Seating Arrangement Problem
 - d) Euler's path

SECTION - II

- Q.5 Answer the following: (6 marks x 2 = 12 marks)
 - a) Write Prim's Algorithm for finding minimal spanning tree.
 - b) Find the shortest distance of all vertices from the vertex 'A' for the graph shown below. Use Dijksta's Algorithm.

- Q.6 Answer the following: (6 marks x 2 = 12 marks)
 - a) Draw two 3-regular graphs with nine vertices.
 - b) In the graph given below, capacity is given along each edge. Find the value of maximum flow from A to B in the network.

- Q.7 Answer the following: (6 marks x 2 = 12 marks)
 - a) What do you mean by a planar graph? Check whether $K_{2,3}$ is a planar graph.
 - b) Find the minimum numbers of colors need to print the graph shown.
