BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2018 COURSE) F.Y.B.Sc.(Computer Science) Sem-I :SUMMER- 2022 SUBJECT : PRINCIPLES OF DIGITAL ELECTRONICS-I

Day: Thursday

Time: 11:00 AM-02:00 PM

ate: 1	`hursda 14 - 07-2		
N.B.			
	1)	All questions are COMPULSORY .	
	2)	Figures to the right indicate FULL marks.	
	3)	Draw diagrams WHEREVER necessary.	
Q.1		Answer ANY TWO of the following:	(12)
	a)	Solve the following using Karnaugh map: $Y = \Sigma m(2,3,4,8,10,11,12,14)$	
	b)	Define encoder with logic diagram. Explain octal to binary encoder with necessary diagram.	
	c)	State and explain De-Morgan's theorems.	
Q.2		Answer ANY TWO of the following:	(12)
	a)	Explain the working of 4:1 multiplexer with necessary diagram.	
	b)	Explain basic gates with symbol, Boolean equation and truth table.	
	c)	Determine the single error-correcting code for the information code 10011 for the odd parity.	
		for the odd parity.	
Q.3		Answer ANY TWO of the following:	(12)
	a)	Give any five Boolean postulates and simplify the following expression	` '
		Boolean algebra: $A + \overline{AB} = A + B$	
	b)	What is a decoder? Explain BCD to decimal decoder with necessary	
		diagram.	
	c)	Explain the working of 4-bit parallel adder with the help of a neat diagram.	
Q.4		Answer ANY THREE of the following:	(12)
	a)	Subtract the following using 2's complement method:	
		$(10001)_2 - (11100)_2$. Also comment on the result.	
	b)	Draw the symbol and give the truth table for: i) 2- input NAND gate ii) 2- input NOR gate	
	c)	i) 2- input NAND gate ii) 2- input NOR gate Subtract (47) ₁₀ from (78) ₁₀ using 2's complement method.	
	d)	Draw logic diagram for decimal to BCD encoder. Write the truth table for	
	u,	the same.	
Q.5		Answer ANY FOUR of the following:	(12)
	a)	Perform the following conversions:	(12)
		i) $(10101111)_2 = (?)_{10}$ ii) $(38.21)_{10} = (?)_2$	
		iii) $(4A8C)_{16} = (?)_2$	
	b)	State and explain any two parameters of logic families.	
	c)	Draw diagram for 1:2 demultiplexer and also write truth table for it.	
	d)	Explain the concept of analog multiplexer.	
	e)	Simplify the following Boolean equation and then draw logic diagram:	
	_	Y = ABC + ABC + BC	
	f)	Minimize the expression:	
		$Y = A\overline{B}C + \overline{AB}C + \overline{AB}C + A\overline{B}C + \overline{AB}C$	

* * *