MASTER OF SCIENCE (CHEMISTRY) (CBCS - 2018 COURSE) M.Sc. (Chemistry) Sem-IV AC :SUMMER- 2022 SUBJECT : RECENT SEPARATION TECHNIQUES

Day : Tuesday Time : 03:00 PM-06:00 PM

Date: 5/7/2022 S-20180-2022 Max. Marks: 60

N. B. :

1) All questions are **COMPULSORY**.

- 2) Figures to the right indicate FULL marks.
- 3) Answers to both the sections should be written in **SEPARATE** answer books.
- 4) Draw neat and labelled diagrams **WHEREVER** necessary.
- 5) Use of non-programmable calculator is **ALLOWED**.

SECTION - I

Q. 1 Attempt **ANY THREE** of the following:

(15)

- **a)** Write the different methods of solvent extraction techniques. Explain Batch extraction method in brief.
- **b)** Define chromatography. Write in detail the principles of chromatography.
- c) What is solvent extraction? Derive a relation

$$D = K \frac{[HR] org}{[H^+] aq}.$$

- d) Define TLC. Explain the TLC technique in detail.
- e) What is fraction extracted (E) and percent extracted (% E)? Discuss two important factors affecting % E.

Q. 2 A) Attempt ANY TWO of the following:

(10)

- i) Define and explain in brief following terms:
 - a) Free column volume (V free)
 - **b)** Peak elution volume (V max)
 - c) Elution constant (E)
 - **d)** Column resolution (Rc)
 - e) Plate Height (H)
- ii) Explain the analytical procedure for estimation of copper from given sample of copper coin by using solvent extraction technique.
- iii) Write a note on "Merits and Demerits of Ion exchange chromatography".
- **B)** Attempt **ANY ONE** of the following:

(05)

- i) In a solvent extraction experiment, the observed % E was 70 % when the volume of organic phase was 25 ml and volume of aqueous phase was 40 ml. Calculate D of the metal ion.
- ii) In the estimation of Fe^{+3} ion from its acidic solution by anion exchange chromatography in a column of length (l) of 20 cm packed with a resin, the elution constant (E) was found to be 0.75. Calculate the peak elution volume (Vmax) in this experiment.

(Given: Free column volume, Vfree = 10 ml)

SECTION - II

Q. 3		Attempt ANY THREE of the following:	(15)
	a)	Explain industrial applications of super critical fluid chromatography.	
	b)	Give information about function of detectors in G.C. Explain any two detectors.	
	c)	Give sketch of HPLC and explain each component of it.	
	d)	Explain the principles of ultracentrifugation and describe sedimentation process.	
	e)	Explain HPLC-MS hyphenated technique.	
Q. 4	A)	Attempt ANY TWO of the following:	(10)
	i)	Explain various columns used in G.C.	
	ii)	Write note on column resolution and selectivity.	
	iii)	Describe behavior of CO ₂ as SFC. State its industrial applications.	
	B)	Attempt ANY ONE of the following:	(05)
	i)	Ethanol and propanol are separated on a column with retention time 6.14 min and 6.84 min respectively, having base width as 0.25 mm and 0.36mm. An	

unretained peak for air occurs at 0.12 min. then calculate selectivity factor

In a gas chromatographic separation of benzene, toulene and xylene, the values of area under the curves were found to be as $16~\mathrm{cm^2}$, $25\mathrm{cm^2}$ and $32\mathrm{cm^2}$ respectively. Calculate the percentage of each component in given mixture.

and resolution.