MASTER OF SCIENCE (CHEMISTRY) (CBCS - 2018 COURSE) M.Sc. (Chemistry) Sem-II :SUMMER- 2022 SUBJECT : ORGANIC CHEMISTRY - II

Day: Saturday
Date: 16-07-2022

S-20146-2022

Time: 03:00 PM-06:00 PM

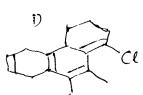
Max. Marks: 60

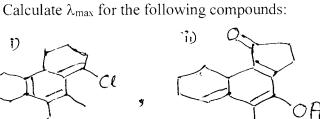
N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figure to the right indicate FULL marks.
- 3) Answer to the both sections should be written in the **SEPARATE** answer books.

SECTION-I

Q.1 Attempt ANY THREE of the following:


[15]


- a) What is Mannich reaction? Discuss its mechanism and applications.
- **b)** What are phosphorous ylides? Explain preparation and applications of phosphorous ylides.
- c) Explain the preparation and applications of organo-lithium compounds.
- d) Explain mechanism and applications of Dieckmann condensation.
- e) Write a note on: Oppenauer oxidation.
- Q.2 Predict the product/s in **ANY THREE** of the following reactions by giving [15] mechanism. Justify your answer.

SECTION-II

Answer **ANY THREE** of the following: **Q.3**

m) COOH

Absorption band of phenol at 270 nm shows red shift at 290 nm when treated b) with NaOH. Explain. Arrange the following compounds in increasing order of carbonyl frequencies.

- A compound having M.F. C₉H₁₄O, shows positive iodoform test and λ_{max} is 249 nm. Determine the structure.
- Write short note on Metastable ion.

Q.4 Attempt **ANY THREE** of the following:

[15]

[15]

Assign the structure with the given data. Justify your answer.

 $M.F. : C_9H_{10}$ U.V.: 255 nm,

I. R.: 3030, 1550, 1500, 740 cm⁻¹

NMR: 2.04δ (quintet, 2H) $2.90 \delta (t, 4 H)$ $7.20 \delta (s, 4 H)$

b) Assign the structure with the given data. Justify your answer.

 $M.F.: C_4H_8O_2$

U.V.: Transparent above 210 nm

I. R. : 2500 - 3300 (br), 1721, 1250 cm⁻¹.

NMR : $0.98 \delta (t, 3 H)$ 1.2δ (sextet, 2 H) $2.15 \delta (t, 2 H)$

9.90 δ (br.s, exchangeable with D₂O, 1 H)

c) Assign the structure with the given data. Justify your answer.

 $M.F. : C_{10}H_{14}$ U.V.: 260 nm.

I. R.: 1600, 1500, 750, 700 cm⁻¹.

NMR: 0.90δ (t, J= 6 H_z, 3 mm)

 $1.22 \delta (d, J = 6 H_z, 3 mm)$

1.61 δ (quintet, J= 6 H_z, 2 mm)

 2.58δ (sextet, $J = 6 H_z$, 1 mm)

 $7.20 \delta (m, 5 mm)$

d) Distinguish the following pair by NMR

e) Give the Genesis of n-Propyl ethyl ketone.

Table 1:

Some characteristic IR data in cm⁻¹. Only approximate values are listed.

\equiv C-H 3300,	= C-H 3050
O = C - H 2800,	N-H 3300
O – H 3600 (free),	$C \equiv N \ 2250$
$C \equiv C 2200,$	C = C 1620 - 1680
Aromatic ($C = C$) 1600 to 1500,	-C = N 1660
Saturated ketone 1720,	Saturated ester 1750
Saturated acids 1720,	Saturated aldehydes 1730,
Saturated amides 1650	$CH = CH_2 900 \text{ and } 910$
CH = CH (trans) 960,	CH = CH - (cis) 690
$C = CH_2 890$ $NO_2 1530$ and 1050	C = CH 790 - 840

Bands for aromatic compounds depends on the number of adjacent free aromatic hydrogens:

Table 2:

Approximate chemical shifts on methyl, methylene and methine protons, in δ values TMS as internal reference.

C – CH ₃ 0.9,	$O - C - CH_3 1.4$
$C = C - CH_3 1.6,$	$Ar - CH_3 2.3$
$O = C - CH_3$ 2.2,	$N - CH_3 2.3$,
$S - CH_3 2.1$,	O - CH ₃ 3.3
C-H in cyclopropane 0.7,	$C = CH_2$ exocyclic 4.6,
$C = CH_2$ open chain 5.3	C - CH 5.1
$C \equiv CH \text{ eyelic 5.3},$	Ar – H 7 to 9