BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2018 COURSE) S.Y.B.Sc.(Computer Science) Sem-IV :SUMMER- 2022 SUBJECT : COMPUTATIONAL GEOMETRY

Day: Wednesday
Date: 6/7/2022

S-20105-2022

Time: 03:00 PM-06:00 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate **FULL** marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.

Q.1 Attempt ANY TWO of the following:

(12)

- a) Prove that mid-point of the line segment AB is transformed to the mid-point of segment $A^* B^*$ under 2×2 transformation matrix [T].
- b) Obtain the transformation matrix for the reflection through x=5 plane.

Apply it on the object
$$[X] = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

c) Find the concatenated transformation matrix for the following sequence of transformations: Shearing in x and y- directions by -2 and 3 units respectively, followed by translation in x and y- direction by -3.2 and 1.6 units respectively, followed by scaling y co-ordinate by factor 4.

Q.2 Attempt ANY TWO of the following:

(12)

- a) Write an algorithm for reflection of an object through an arbitrary plane in space.
- **b)** Determine the isometric projection for $\phi = -45^{\circ}$, $\theta = -35.26^{\circ}$. Apply it on $P\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$.
- c) Obtain transformed position vectors of the vertices of $\triangle ABC$, when $\triangle ABC$ is rotated through an angle 90° about the local X- axis passing through $A[-1\ 2\ 2\ 1], B[2\ 1\ 2\ 1], C[2\ 3\ 2\ 1].$

Q.3 Attempt ANY TWO of the following:

(12)

- a) Obtain an algorithm to generate uniformly spaced n points on the circle $(x-h)^2 + (y-k)^2 = r^2$.
- b) Generate 5 points on the parabolic segment in the first quadrant for $2 \le y \le 10$ for the parabola $y^2 = 4x$
- c) Find the parametric equation of the Be'zier curve with control points $B_0[-2 \ 1]$, $B_1[1 \ 3]$, $B_2[6 \ -1]$. Also find the point corresponding to the parameter value t = 0.357.

P.T.O.

Q.4	Attempt ANY	THREE	of the	following:
-----	-------------	-------	--------	------------

(12)

- a) Find an angle $\delta\theta$ to generate uniformly spaced 5 points on the circumference of a circle in the second and third quadrant.
- b) Explain terms:
- i) Centre of projection
- ii) Parallel projection
- c) Obtain recursive formula to generate equispaced 10 points of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1.$
- d) Find the parametric equation of the Be'zier curve determine by the control points $B_0 \begin{bmatrix} 1 & 0 \end{bmatrix}$, $B_1 \begin{bmatrix} 2 & 5 \end{bmatrix}$, $B_2 \begin{bmatrix} 4 & 6 \end{bmatrix}$ and $B_3 \begin{bmatrix} 6 & 2 \end{bmatrix}$.

Q.5 Attempt ANY FOUR of the following:

(12)

- a) The line segment joining $A[4 \ 9]$ and $B[-2 \ 1]$ is scaled uniformly by factor 2. What is the mid-point of the transformed line segment?
- **b)** State true or false: "Two parallel lines may intersect after any transformation." Justify with proper example.
- c) Develop the bottom view of the object in three dimensional transformation.
- d) Write the transformation matrix for each of the following:
 - i) Rotation about z- axis through an angle $\theta = -25^{\circ}$.
 - ii) Reflection through XY- plane.
- e) Determine the parametric representation of the line segment between $P_1[3 \ 4]$ and $P_2[5 \ 2]$. Also determine the slope and tangent vector of the line segment.
- f) Write any two applications and properties of Be'zier curve.

* * * * *