BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2018 COURSE) S.Y.B.Sc.(Computer Science) Sem-IV :SUMMER- 2022

SUBJECT: OPTIMIZATION TECHNIQUES

Day : Friday Time : 03:00 PM-06:00 PM

Date: 8/7/2022 S-20106-2022 Max. Marks: 60

 $\overline{N.B.}$

1) All questions are **COMPULSORY**.

2) Figures to the **RIGHT** indicate **FULL** marks.

3) Use of non-programmable **CALCULATOR** is allowed.

Q.1 Attempt ANY TWO of the following:

(12)

- a) A manufacturing company makes two models A and B of a product. Each piece of a model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively. The company makes profit of Rs. 8,000 on each piece of model A and Rs. 12,000 on each piece of model B. How many pieces of model A and model B should be manufactured per week to get a maximum profit? What is the maximum profit? (Solve by graphical method).
- **b)** Solve the following L.P.P. by simplex method:

Minimize $Z = 10x_1 + 6x_2 + 2x_3$

Subject to $-x_1 + x_2 + x_3 \ge 1$

$$3x_1 + x_2 - x_3 \ge 2$$
.

$$x_1, x_2, x_3 \ge 0$$

c) Solve the following assignment problem

M	ac.	hı	n	e

	I	II	III	IV
A	1	3	5	2
В	8	6	9	8
C	3	4	10	6
D	7	6	7	4

Q.2 Attempt **ANY TWO** of the following:

Jobs

(12)

- a) Describe the steps for finding an initial basic feasible solution of transportation problem by Vogel's Approximation Method (VAM).
- **b)** Find an initial basic feasible solution of the following transportation problem by North-West Corner Method.

To -> From	W_1	\mathbf{W}_2	W ₃	W_4	Supply
F ₁	30	25	40	20	100
F ₂	29	26	35	40	250
F ₃	31	33	37	30	150
Demand	90	160	200	50	500

c) Solve the given problem by dual simplex method:

Minimize Z = 2x + 3y

Subject to $2x+3y \le 30$

$$x+2y\ge 10$$
.

$$x \ge 0, y \ge 0$$

Q.3 Attempt **ANY TWO** of the following:

- (12)
- a) Explain the procedure of graphical method of solving $2 \times m$ or $n \times 2$ game.
- b) Solve the following game by dominance principle:

Player B

Player A
$$\begin{bmatrix} I & III & IIII & IV & V \\ I & 3 & 5 & 4 & 9 & 6 \\ 5 & 6 & 3 & 7 & 8 \\ III & 8 & 7 & 9 & 8 & 7 \\ IV & 9 & 2 & 8 & 5 & 3 \end{bmatrix}$$

c) Solve the following assignment problem.

	A	В	C	D
I	2	3	4	5
II	4	5	6	7
III	7	8	9	8
IV	3	5	8	4

Does it have alternative optimal solution? If yes, find it.

Q.4 Attempt ANY THREE of the following:

(12)

- a) Explain the following terms:
 - 1) Objective functions
 - 2) Feasible solution.
- **b)** What is an unbalanced assignment problem? How to make such problem balanced.
- c) Determine the optimum assignment so as to minimize the total cost, where '-' indicates job cannot be assign to machine table.

Machines

		P	Q	R	S	T
	A	7	7	_	4	8
	В	9	6	4	5	6
Jobs	C	11	5	7	_	5
	D	9	4	8	9	4
	E	8	7	9	11	3

d) Solve the following game by using subgame method:

Q.5 Attempt **ANY FOUR** of the following:

(12)

- a) Write down advantages of dual of L.P.P.
- **b)** Obtain the standard form of given L.P.P.

Maximize Z = 2x + 3y

Subject to
$$2x+3y \ge 5$$

$$2x + 4y \le 7 \quad .$$
$$x \ge 0, \ y \ge 0$$

Is the following game fair game? c)

$$A \begin{bmatrix} -1 & 0 & -3 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

- d)
- Define i) Value of the game ii) Saddle point. Determine whether the following solution is degenerate? Justify. e)

5	8	6	5	3
4	7	7	6	5
8	4	6	6	5

Explain how to solve maximization assignment problem. f)