BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2018 COURSE) F.Y.B.Sc.(Computer Science) Sem-II :SUMMER- 2022 SUBJECT : ALGEBRA-II

Day: Friday Time: 11:00 AM-02:00 PM Date: 8/7/2022 S-20081-2022 Max. Marks: 60 **N.B.**: 1) All questions are **COMPULSORY**. 2) Figures to the right indicate FULL marks. Use of non-programmable CALCULATOR is allowed. 3) 0.1 Attempt any **TWO** of the following: (12)Let \mathbb{Q}^+ be the set of all positive rational numbers, define binary operation *on \mathbb{Q}^+ as $a*b = \frac{ab}{2}$, $\forall a, b \in \mathbb{Q}^+$. Show that $(\mathbb{Q}^+,*)$ is a group. **b)** Show that $S = \{1, -1, i, -i\}$ forms a group under multiplication. c) Find all subgroups of cyclic group of order 12. Draw Hasse diagram for subgroup relation. **Q.2** Attempt any **TWO** of the following: (12)a) State and prove Lagrange's Theorem. **b)** Construct composition table for group S_3 . **c)** Let $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$ and $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$, find σ_1^{-1} , σ_2^{-1} and also compute $\sigma_1 o \sigma_2$ and $\sigma_2 o \sigma_1$. Is $\sigma_1 o \sigma_2 = \sigma_2 o \sigma_1$? Attempt any TWO of the following: **Q.3** (12)a) Prove that every infinite cyclic group is isomorphic to $(\mathbb{Z},+)$. **b)** Find all generators of cyclic group $(\mathbb{Z}_{30}, +)$. **c)** Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 4 & 3 & 6 & 1 & 7 & 9 & 8 \end{pmatrix}$ as a product of disjoint cycles. Determine σ is even or odd Attempt any **THREE** of the following: (12)0.4 a) Construct addition table for $(\mathbb{Z}_8, +_8)$. b) If G is a group then prove that every element has unique inverse in G. c) Is union of two subgroups is subgroup? Justify. d) Let $f:(\mathbb{Z},+)\to(\mathbb{Z}_n,+_n)$ be a function defined by f(a)=a. Show that f is homomorphism. Find ker (f). (12)Attempt any **FOUR** of the following: Q.5 a) Define the term 'order of an element' and find $o(\bar{2})$ in the group $(\mathbb{Z}_6, +_6)$. **b)** Find all subgroups of S_3 . Show that the group G is abelian if and only if $(a \ b)^2 = a^2 \ b^2$, $\forall a, b \in G$. d) Prove that every proper subgroup of a group of order 51 is cyclic. Let $\phi: (\mathbb{Z}, +) \rightarrow (\mathbb{Z}, +)$ define as $\phi(n) = 2n$, $\forall n \in \mathbb{Z}$ verify ϕ is

* * * *

group homomorphism.

f) Show that A_3 is normal subgroup is S_3 .