BACHELOR OF SCIENCE (COMPUTER SCIENCE) (CBCS - 2018 COURSE) F.Y.B.Sc.(Computer Science) Sem-I :SUMMER- 2022 SUBJECT : ALGEBRA-I

Day: Saturday Date: 9/7/2022

S-20069-2022

Time: 11:00 AM-02:00 PM

Max. Marks: 60

N.B.:

- 1) All questions are **COMPULSORY**.
- 2) Figures to the right indicate FULL marks.
- 3) Use of non-programmable **CALCULATOR** is allowed.
- Q.1 Attempt ANY TWO of the following:

[12]

- a) State De Moivre's theorem and use it to prove $(1+i\sqrt{3})^{-10} = 2^{-11}(-1+i\sqrt{3})$.
- **b)** Express $\cos^7\theta$ and $\sin^7\theta$ in terms of the cosines of multiple angles.
- c) If $z_1, z_2 \in \mathbb{C}$ then prove that,
 - i) $|z_1 \ z_2| = |z_1| |z_2|$
 - ii) $arg(z_1 z_2) = arg z_1 + arg z_2$
- Q.2 Attempt ANY TWO of the following:

[12]

- a) Let $S = \{1, 2, 3, 4, 5\}$ and $R = \{(1, 2), (3, 4), (3, 2), (4, 5), (5, 3), (1, 5)\}$ be a relation on S. Find the transitive closure of R by using Warshall's algorithm.
- **b)** If the function $f: \mathbb{R} \to \mathbb{R}$ define as $f(x) = \frac{2x-3}{7} \ \forall x \in \mathbb{R}$, then show that f is bijective. Hence find f^{-1} .
- c) If a, b, $x \in \mathbb{Z}$, $n \in \mathbb{N}$ and $a \equiv b \pmod{n}$ then prove that,
 - i) $(a + x) \equiv (b + x) \pmod{n}$.
 - ii) $ax \equiv bx \pmod{n}$.
- Q.3 Attempt ANY TWO of the following:

[12]

- a) Show that a = 389 and b = 167 are relatively prime. Also find integers x and y such that 389x + 167y = 1.
- **b)** If p is a prime integer and a, $b \in \mathbb{Z}$ then prove that if p | ab then p | a or p | b.
- c) Construct a decoding table with syndromes for a group code given by generator

 [1 0 1 1 0]

matrix
$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Use the table to decode the following received word:

- i) 11110
- ii) 10010.

P.T.O.

- a) Obtain the remainder when 8^{401} is divided by 13.
- **b)** Prove that for any integer x, (a, b) = (a, b + ax).
- c) Solve $x^8 x^4 + 1 = 0$ by De Moivre's theorem.
- d) Construct decoding table for the (2, 4) codes given by the following generator matrix, $G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.

Q.5 Attempt ANY FOUR of the following:

[12]

- a) Give an example of a relation which is:
 - i) symmetric but neither reflexive nor transitive.
 - ii) equivalence
- **b)** If $f: \mathbb{R} \to \mathbb{R}$ is define by $f(x) = x^2 + 2x + 3$ and $g: \mathbb{R} \to \mathbb{R}$ is define by g(x) = 2x + 3, find fog=?
- c) Express the following complex number into polar form, $z = \frac{-1 i\sqrt{3}}{2}$.
- **d)** If $z + \frac{1}{z}$ is real then show that I(z) = 0 or |z| = 1.
- e) Prove that $\sqrt{5}$ is not a rational number.
- f) Find the Hamming distance between x = 00000 and y = 11111.

* * * *