## BACHELOR OF SCIENCE (CBCS-2018 COURSE) T. Y. B. Sc. Sem-VI :SUMMER- 2022 SUBJECT: PHYSICS: ATOMIC & MOLECULAR PHYSICS

Day : Tuesday

Date : 5/7/2022

S-18463-2022

Time : 11:00 AM-02:00 PM

Max. Marks : 60

N. B.

- 1) All questions are **compulsory**.
- 2) Figures to the right indicate full marks.
- 3) Draw the neat **diagram** wherever necessary.
- **Q 1.** Attempt any **Two** of the following.

(12)

- (a) Explain sodium doublet in sodium spectra.
- **(b)** Write a note on origin of characteristics X ray spectra.
- (c) Write a note on four quantum numbers.
- **Q 2.** Attempt any **Two** of the following.

(12)

(a) Show that the vibrational energy level of the diatomic molecule is given by

$$E_{\nu} = \frac{\left(\nu + \frac{1}{2}\right)\mathbf{h}}{2\pi} \sqrt{\frac{k}{\mu}}$$

- **(b)** Explain Raman effect on the basis of quantum theory. Draw the necessary energy level diagram.
- **(c)** Write a note on Frank and Hertz experiment. What conclusions are drawn from the experiment.
- Q 3. Attempt any Two of the following.

(12)

- (a) What is electronic spectra of molecule and hence discuss florescence and phosphorescence.
- (b) Explain vector atom model in detail.
- (c) With neat diagram, explain the experimental set up to produce and observe Zeeman effect.
- **Q 4.** Attempt any **Three** of the following.

(12)

- (a) Find the minimum magnetic field needed for the Zeeman effect to observe in spectral line of 200 nm wavelength, when a resolution of a spectrometer is 0.010 nm.
- **(b)** Write the electronic configuration of fluorine and neon.
- (c) Compare between X ray spectra and optical spectra.
- (d) Determine the ground state of the aluminum atom (Z=13) and represent it in the spectral notation.
- **Q 5.** Attempt any **Four** of the following.

(12)

- (a) Write a note on Bohr's postulates.
- **(b)** Find the orbital angular momentum of d electron.
- (c) The frequency of strong yellow line in spectrum of sodium is  $5.09 \times 10^{14}$  sec<sup>-1</sup>. Calculate the wavelength of the light in nanometers.
- (d) The spacing between vibrational level of CO molecule is 0.08 eV . Calculate the value of force constant .Take mass of carbon atom =12 a.m.u. and that of oxygen 16 a.m.u., Mass of proton = $1.67 \times 10^{-27}$  kg.
- (e) In an experiment of Raman effect using mercury green radiation of  $\lambda = 546.1$  nm, a Stoke's line of wavelength 554.3 nm was observed. Find Raman shift and wavelength corresponding to anti-Stoke's line.
- (f) Explain in short Rutherford's model of an atom.

\* \*